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ABSTRACT

Abstract

I estimate a dynamic discrete choice model of the decision of going to college

in a speci�c major. Dynamics in the model result from a correlated bayesian

learning structure about individual comparative advantages in the labor mar-

ket, which allows me to decompose the income gains associated to college ed-

ucation into three components: (i) human capital accumulation, (ii) access to

specialized segments of the labor market, and (iii) better exploration of com-

parative advantages due to the use of information acquired in college. The

estimation suggests scienti�c majors are especially bene�tted from (ii) whereas

in non-scienti�c occupations the e¤ect (i) dominates.

I then use the estimated structural parameters to simulate the impact of

restrictions to changes of major during college, a policy commonly found outside

North America. The results suggest that if American students were not allowed

to switch majors, they would have welfare losses equivalent to their �rst year

of labor income after college.
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ABSTRACT

I estimate a dynamic discrete choice model of the decision of going to college in a

specific major. Dynamics in the model result from a correlated bayesian learning

structure about individual comparative advantages in the labor market, which

allows me to decompose the income gains associated to college education into three

components: (i) human capital accumulation, (ii) access to specialized segments

of the labor market, and (iii) better exploration of comparative advantages due

to the use of information acquired in college. The estimation suggests scientific

majors are especially benefitted from (ii) whereas in non-scientific occupations the

effect (i) dominates.

I then use the estimated structural parameters to simulate the impact of re-

strictions to changes of major during college, a policy commonly found outside

North America. The results suggest that if American students were not allowed

to switch majors, they would have welfare losses equivalent to their first year of

labor income after college.
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CHAPTER 1

THE CHOICE OF MAJOR: EFFECTS ON WAGES AND

AN EVALUATION OF THE NO-SWITCHING MAJORS

RULE

1.1 Introduction

Education policymakers seem to be very interested in making college curricula more

flexible1. On one hand, there is the belief that flexibility may help a heterogeneous

mass of students to adapt to a set of occupations that has also become increas-

ingly heterogeneous as the technology change and the division of labor evolve.

On the other hand, the relatively flexible North American university system was

apparently successful in expanding college education.

The original focus of this research is to evaluate the economic importance of a

specific aspect of the flexibility observed in the United States and Canada and not

frequently found elsewhere, namely the freedom students have to change majors

during the period in college, without losing the credits already earned so far. This

question is interesting for two reasons: in terms of policy, it involves a change in

the mechanism universities operate that could potentially bring positive economic

results without implying in extra expenses to the society. On the other hand,

an econometric evaluation of this policy is methodologically challenging, because

whichever rule is chosen, it affects everybody at the same time, so that the direct

comparison between people affected and not affected by this policy is not available

to the analyst.

1. See the conclusions of the Bologna Convention, and the Brazilian project Nova Escola,
among others.

1
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The theoretical framework used to investigate this problem is one in which indi-

viduals complete high school with only partial information about their comparative

advantage to different careers, and college education discloses new information

about this matching that could be useful for them to make better professional

choices. Major switching can then be justified by the fact that the information

set evolves over time, and restrictions to this movement can be evaluated in terms

of the ability to use this new information to improve on the individuals’ previ-

ous choices. The model shows total gains of one period of college experience can

be divided into an increase in the individual’s productivity that could be used in

high-school occupations even if the individual did not get the degree, and an option

value of eventually graduating and being able to supply labor to a specialized seg-

ment of the market. The no-switching restriction represents in this case a change

in this option value, which can be aggregated over individuals to have a global

measure of its impact. The empirical strategy in this case consists on the estima-

tion of a structural dynamic discrete choice model where agents always choose the

alternative that maximizes their expected present value of wealth, with the use

of the estimated structural parameters to simulate a counterfactual world where

the individual maximization problems are constrained by a no-switching majors

clause.

The underlying model is rich enough to allow for correlated learning and human

capital accumulation, i.e., classes in a given major not only increase and bring new

information about the talent required to perform tasks associated to that major,

but also change the level and the information about other types of talent. It

also allows me to quantify three channels through which college experiences could

potentially affect ex-post wages, which constitutes the second goal of this paper.
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In the first channel, which I call human capital effect, college courses increase the

level of the various types of individual abilities, making them more productive.

In the second, denoted as the credential effect, graduation in a given major let

individuals get access to a privileged segment of the labor market, where personal

traits are priced in a specific way. Finally, there is the informational effect, where

the better knowledge of one’s true talents allows her to make better choices and

to explore more efficiently hers comparative advantages.

Although the specific policy evaluation just mentioned has not been conducted

(to my knowledge) in the literature, there are a couple of papers closely related to

this problem that should be briefly mentioned. Two of the three forces that interact

in the model to determine the choice of going to college have been the objects of

two vast literatures. In the first branch it is emphasized the importance of the

increase in the agent’s productivity associated with human capital accumulation,

which in equilibria should equalize the foregone earnings during the period in

college. The main references in this agenda are the early theoretical articles by Ben

Porath (1967), Gary Becker (1962, 64), which met the empirical evidence found by

Mincer (1958,74), exhaustively replicated by others until nowadays. In the second

branch, inaugurated by Willis and Rosen (1979), it is proposed an alternative

model where college and high-school occupations use productive traits in different

ways, so that individuals self-select themselves into these two sectors in order to

get the highest reward for their bundle of attributes, and where the main force

driving the decision of going to college is the individual’s comparative advantages.

This line of investigation was followed by Heckman and Cameron (1998,2001),

who incorporated dynamics and forward looking behavior to the agent’s decision,

and Cunha, Heckman and Navarro (2005), who proposed a way to incorporate and
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separate the unobserved components of initial heterogeneity and uncertainty in the

individual dynamic problem. In this branch, the empirical strategy builds heavily

upon the work of Roy (1951).

Partial information about specific talents with Bayesian learning coming from

signals revealed though signals received after the first decision are a common aspect

in the studies about choice of career by Jovanovic (1979), Miller (1984), and applied

to the choice of major by Arcidiacono (2004). In the Multiarmed Bandit model

adopted by Jovanovic and Miller, abilities are allowed to be multidimensional,

but uncorrelated, which implies that the signals are informative only about the

payoffs associated to the decision currently made. This simplification is useful

to circumvent the curse of dimensionality (the impossibility of computationally

solving problems with too many periods and choices per period), through the

use of Dynamic Allocation Indexes, but is frequently though as unrealistic, and

I do not use in the present paper. In the case of Arcidiacono, human capital

is unidimensional (which in one sense can be seen as the other extreme, where

talents are perfectly correlated), which also facilitates the characterization of the

solutions, but implies the different occupations form a ladder so that most able

individuals would always choose the good careers, and the others would go to the

bad careers (in his case one only has to know about her position on this ladder).

In my exercise, multidimensional abilities allow that individuals may be suited for

some careers but not for others, with no predetermined hierarchy of majors.

The paper is structured in three parts following this introduction. In the next

section I introduce and discuss the theoretical model used to analyze the questions

posed above. In section 3 I describe the dataset and the empirical strategy used

to perform the estimations and simulations required to answer these questions. In
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section 4 I discuss the limitations of this research and the extensions that should

be carried out in order to improve the analysis.

1.2 Model

The model below describes a population of risk neutral individuals who want to

maximize the expected present value of their income flows. The economy consists

of J + 1 types of occupations, each of which combines the observable productive

characteristics Xi of workers, with a specific unobservable talent Uijt (that evolves

over time) to produce output. The specific ability is not observed neither by the

individuals and firms, nor by the econometrician, but the agents do observe some

signals about it and form their best guesses Us
ijt, which are used to make their

choices at time t. If one starts working, I assume he/ she stays in that occupation

for his/ her entire working life (T periods), and no further decision takes place.

Before that, agents have to decide whether to go to college, and in which major,

and they know that college experience will not only increase their vector of abilities,

Ui, but also bring some new information about it, so that their guesses about Ui

may become more accurate (and hence allowing them to make better decisions).

Only individuals who graduated in major j have the option to supply labor to

that segment of the market, and the sector j = 0 comprises all of the occupations

that do not require a college degree, being therefore called the "high-school" or

"unskilled" sector.

Environment

Formally, life begins at the end of high-school, and agents are endowed with a

vector of (true) abilities and a vector of signals about them, related to one another

through the equation:
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Ui0 = Us
i0 + vi0

vi0⊥Us
i0 (1.1)

vi0 ∼ N (0,Λ0)

Us
i0 ∼ N (0,Ω0)

where vi0 is the portion of the abilities unknown to the agents at time 0. The

vectors Ui0, Us
i0, and vi0 have coordinates of the type Uij0, U

s
ij0, vij0, corresponding

to the respective components of ability in different sectors.

The choice set in period 0 is formed by J + 1 possibilities, denoted
©
dij0

ªJ
j=0,

with the restriction that agents can take only one action per period, which means

that dijt = 1 iff action j is taken in period t (and 0 otherwise), and:

JX
j=0

dijt = 1;∀t

As mentioned before, di0t refers to the choice of going to the labor market in

sector 0, which implies that the individual will no longer have further decisions to

make, i.e.:

di0tdijt+1 = 0;∀j > 0

If one decides to go to college in major j, he/ she faces a new decision node in

the next period, with a set of J + 1 actions similar to the previous period. Each

of these choices j > 0 is costly, both because students have to pay tuition and fees

to the university and due to the effort and other eventual personal sacrifices spent

in that period. I call Cijt the total cost of these choices, and it depends both on
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observable characteristics of agents, and on non-persistent shocks that arrive at

each period and observed only by the agents:

Cijt = βcjX
c
i + �ijt (1.2)

Xi, U
s
it⊥�ijt ∼ N (0, S) , i.i.d.

The initial information set upon which individuals make decisions can then be

written as:

Ii0 = {Xi, U
s
i0, �i0}

College experience

If an individual decides to take one period of courses at college level, two

things happen. First, these classes potentially improve the individual productivity

by the acquisition of new skills, therefore affecting the level of true abilities. In

particular, I assume that one period of classes in major j increase human capital

in a deterministic fashion described by the equation:

Uit+1 = θjUit (1.3)

θj =

⎡⎢⎢⎢⎢⎣
θj0 0

. . .

0 θjJ

⎤⎥⎥⎥⎥⎦
Second, college students observe new signals about their true abilities that are

incorporated to their information sets. The new information is associated to the
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individual characteristics through:

Gijt = β
g
jX

g
i + ϕjUijt + σjεit (1.4)

X
g
i , Uit⊥εit

εit ∼ N (0, 1) (1.5)

In this expression, εit is an i.i.d. non-persistent random shock that affects the

signal in that period (e.g. if Gijt is the GPA obtained in major j, at time t, εit

could be sickness, family problems, etc., that affected the student’s performance,

but which is unrelated to abilities or other characteristics).

After revealed, the new signal is incorporated to the information set, that

becomes:

I
(j)
it+1 =

©
Iit, Gijt, �it

ª
The superscript (j) is used only to stress the fact that different decisions would

in principle disclose different pieces of information. Although the set above in

general contains everything the agents know until period t, we will see that only

{Xi, E (Uit|It) , �it} are relevant for the decisionmakers to solve their maximization

problems (and in particular, previous realizations of �it−s are unimportant, as these

terms are non-persistent and do not affect the future payoffs of any choice). In

period 0, we directly have that E (Ui0|I0) = Us
i0, and the equations (1)-(3) deliver

an analytical expression for the law of motion of E (Uit|It) over time (which for

simplicity is denoted just Us
it):
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Us
it+1 = Λit+1

"¡
Λitθj

¢−1
Us
it +

ϕj

σ2j

³
Gijt − βgjX

g
i

´
Dj

#
(1.6)

Λ−1it+1 =
¡
θjΛitθj

¢−1
+

µ
ϕj
σj

¶2
DjD

0
j (1.7)

where Dj = [0, ...0, , 1, 0, ...0] is an indicator vector with the coordinate j being its

only nonzero entry. The expressions above are a version of the Normal-Bayesian

learning described in De Groot(1970) and Zellner(1971), and applied to economic

problems by Jovanovic(1979), Miller(1984) and Arcidiacono(2004), among others,

slightly generalized to allow for variations over time in the hidden variable Ui. As

expected, the inverse of the variance matrix of the unknown component of abilities

(also called the precision matrix, in the Bayesian jargon) increases proportionally

to the precision in the previous period, and inversely to the rate of human capital

accumulation. Moreover, the more the signal is related to the true abilities (sum-

marized by |ϕ|), the faster is the revelation of information, and the noisier this

signal is, the slower is informational disclosure. The first equation also says that

the current information individuals have about abilities is described as a weighted

average between what they knew in the previous period and the new signal. The

distribution of Uit conditional on Iit can then be defined as:

Uit|Iit ∼ N (Us
it,Λit)

It is interesting to notice two things in the form of learning proposed here.

First, the process of learning is correlated, and the standard methods used to

solve the (uncorrelated) multi-armed bandit problem proposed by Gittins (1979)
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and Gittins and Jones (1979) will not apply in this case. When taking classes in

major j, the student knows that all coordinates of her ability vector will change,

and also that they will gather new information about this whole vector, causing

the payoffs associated to all available choices to change as well. Second, because

the hidden vector of abilities is also growing over time, a general result that the

variance of the unknown portion of abilities decreases over time no longer holds in

this case. Instead, what we can say is that this variance either decreases over time

or increases at a slower rate than the variance of the known part of talents. To see

this, notice that the motion of each element of Λit and Ωit (denoted λkmt+1 and

ωmkt+1, respectively) can be written as:

λkmt+1 = θjkθjmλkmt − θjkθjmλkmt
ρkjtρmjt

ρmkt

Ã
ξ2jλjjt

1 + ξ2jλjjt

!

ωmkt+1 = θjkθjmωmkt + θjkθjmλkmt
ρkjtρmjt

ρmkt

Ã
ξ2jλjjt

1 + ξ2jλjjt

!

ξj =
θjjϕj
σj

; ρkjt =
λkjtp
λkktλjjt

such that, in general there is a transference of θjkθjm
ρkjtρmjt
ρmkt

³
ξjλjjt
1+ξjλjjt

´
from Λit

to Ωit, and for the diagonal elements (m = k) that represent the variances of vit

and Us
it, respectively, this term necessarily lies in the interval

¡
0, θjkθjmλkmt

¢
. The

case
©
θjk = 1,∀j, k : λkm0 = 0,∀j 6= k

ª
would recover the standard multi-armed

bandit model (with θjkθjm
ρkjtρmjt
ρmkt

being 1 in the diagonal and 0 elsewhere).

Labor market

In this world information is symmetric, although incomplete. In every sector,

firms and workers agree about a wage that captures the perceived productivity in



11

that segment, which should then be a function of observable characteristics and

the known part of the specific sectoral ability, i.e., wijt = fj

³
Xit, U

s
ijt, ηit

´
, where

ηit is just an i.i.d. shock (observed by the agents but not by the econometrician)

that affects the workers’ productivity at a given point in time. Because the focus

of this research is on learning during college, I assume no further information

about talents is disclosed after the last period in college, denoted by τ i. Therefore,

Us
it = Us

iτ i
,∀t ≥ τ i. Finally, the observed part of personal attributes, Xi has only

one element that varies over time, in a deterministic way, which is the experience

in the labor market (defined as t− τ i). For simplicity, I assume the wage equation

is linear, i.e.:

wijt = βwj X
w
i +Aj (t− τ i) + Us

ijτ i
+ ρjηit (1.8)

Xw
i , U

s
ijτ i
⊥ηit ∼ N (0, 1)

Xw
i ⊆ Xi (1.9)

We are now in a position to investigate how tertiary education affects wages in

this economy. First, a college degree determines that the individual characteristics¡
Xw
i , t− τ i

¢
will no longer be priced in the same way as high-school occupations,

since the hedonic prices of this characteristics are now indexed by j. Second,

people who did not finish college will go to the labor market earlier in life, and will

not only start making money before the college graduates, but also will have more

experience, since their τ i will be lower. Third, college education will affect the

specific ability required in sector j in two ways, through information and human

capital accumulation. Because the wage equation is linear as well as the law of
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motion of Us
it, it is possible to exactly separate these effects (and to quantify them,

as shown in the next section). In particular,

wijt = βwj X
w
i +Aj (t− τ i) + ρjηit +

Ã τ iY
s=0

θksj

!
Us
ij0 +H

¡
Us
i0, G

τ i
i , Xi,D

τ i
i

¢
(1.10)

where H
¡
Us
i0, G

τ i
i ,Xi,D

τ i
i

¢
is also a linear function of the initial signal, Us

i0, the

decision history, Dτ i
i =

£
dij11, ..., dijτ τ

¤
, and the history of college signals, Gτ i

i =£
Gij11, ..., Gijτ τ

¤
. Given this structure, the average income gains (in terms of first

wages) of getting a college degree can therefore be exactly decomposed into three

effects:

wijτ − wi0τ =
³
βwj − βw0

´
Xw
i + Us

ij0 − Us
i00

+

Ã τ iY
s=0

θksj − 1
!
Us
ij0

+H
¡
Us
i0, G

τ i
i ,Xi,D

τ i
i

¢
where ks = k ⇔ diks = 1.

In the first line of the right hand side of the equation above, we see what I

call the credential effect, or the difference in wages that would appear without any

modification in the specific abilities, and due only to the fact that labor in sector

j rewards individual characteristics in a different way than sector 0 does. In the

second line we see the human capital effect, resulting from the fact that abilities

of type j were raised by a

Ã τ iY
s=0

θksj − 1
!
factor in the years spent in college.

Finally, H
¡
Us
i0, G

τ i
i ,Xi,D

τ i
i

¢
captures the new information about abilities that
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was revealed by the college signals, and which is also priced in the labor market.

Similar exercises could be imagined for dropouts, that would end up competing

by the sector 0 jobs (so that the credential effect would be zero), but would still

display eventual gains from going to college in the form of an increase in human

capital and more accurate information about talents.

The decision problem

As mentioned before, agents are assumed to be risk neutral and to maximize the

expected present value of their income flows in the T years after the moment they

finish high-school. Moreover, whenever an individual starts working, I assume

he/ she stays in the labor market for the rest of his/ her active period of life,

giving up the chance of eventually going to college and changing careers (this

is somehow coherent with the assumption that the labor market does not bring

relevant information about one’s comparative advantages).

If an individual has already gone to the labor market, after τ i periods in college,

his/her expected value of income is:

Wit
¡
j, Iiτ i

¢
=

TX
s=t

δ(s−t)
h
(s− τ i)Aj + βwj X

w
i + Us

ijτ i

i
=

"
1− δT−t+1

1− δ

#³
(t− τ i)Aj + βwj X

w
i + Us

ijτ i

´
+δ

"
1− δT−t+1

(1− δ)2
− (T − t+ 1) δT−t

1− δ

#
Aj

On the other hand, if the person is still enrolled in college and considers to

choose major j in that period, he/she pays the cost Cijt (which includes direct

and psychic costs), and keeps it open the possibility of eventually graduating in
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some major with the correspondent payoff, i.e.

Vijt (Iit) = −Cijt + δE

⎡⎣max
dk

JX
k=0

dikt+1Vikt+1 (Iit+1) |Iit

⎤⎦ (1.11)

We can then state the maximization problem as:

max
{dijt}Jj=0

JX
j=0

dijtVijt (Iit) (1.12)

s.t. : Iit+1 = It+1
¡
Iit, Gijt, �it, dijt = 1

¢
:

JX
j=0

dijt = 1

: di0tdijt+1 = 0;∀j > 0

The first restriction shows the law of motion of the information set, which

may vary with the current choice of major. The second forbids agents to take

more than one choice per period. The third constraint says that one cannot leave

college today and come back in the next period. Finally, I impose that graduation

in college takes three periods (because in most 4-year programs students do not

have to declare a major at the end of the first year), so that at the beginning of the

third period Vijt (Iit) = −Cijt + δE
£
Wit+1

¡
j, Iit+1i

¢
|Iit
¤
for every j > 0. Notice

that , by construction, Vi0t (Iit) =Wit (0, Iit) in every period.

The exercise is a standard version of dynamic discrete choice models, but con-

tains some elements not so often found in the literature. Besides the fact that

learning is correlated and is about a hidden variable that also varies over time,

the solution to this question clearly incurs in a dynamic selectivity problem that

any empirical analysis must be aware of. The difficulty is that even though Us
i0 is
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randomly distributed across the population, the subsample that is observed tak-

ing classes in a given major probably had particularly good draws of this vector

(a least in the coordinate correspondent to that major), which indicated he/she

could be a good professional in that career. As the results of college experience

are revealed, those with a really good perceived ability in the previous period are

more willing to tolerate bad realizations of the new signals than those who were

at the margin between taking that major or doing something else, thus biasing

even more the distribution of Us
it in that class of students. Finally, in the same

cohort we have people with different previous decision histories, and therefore with

information sets that evolved according to different laws of motion. This difficulty

certainly plays a role in the choice of the estimation procedure suited to perform

the empirical analysis in the next section.

The no-switching majors rule

The model just introduced rationalizes the decision of going to college in a

specific career, providing a reasonable mechanism which justifies why agents may

optimally want to review their previous decisions, based on the motion of the state

variables over time. The no-switching majors rule is a restriction on the choice

set of the individuals which limits the options after the first period to a binary

decision between staying put in the same major or dropping out of college. In

most countries, students have some sort of limitation in their abilities to change

majors during college, or to use credits previously earned in other majors if they

decide to change their fields of study. Evaluating this type of policy is not trivial,

because the treatment in principle affects the whole population, and in this sense it

is similar to the problem proposed by Marschak (1953), who wanted to estimate the

impact of an increase in a commodity tax on its demand (likewise, the increase in
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taxes affects everybody and reduces the number of choices available to the agents).

Like Marschak, our method of evaluation involves the estimation of structural

parameters that determine choices in an unrestricted environment, and then use

these parameters to simulate how the individual behavior and welfare would change

after the restriction is imposed, except that in our case the behavior is described

by a dynamic problem and the choice set by a discrete number of actions.

In practice, the first step is to solve the dynamic discrete choice problem both

in the unrestricted and in the restricted cases, for every member of the population,

and then find ways to aggregate the solutions to these problems in synthetic mea-

sures of the policy effect. To illustrate how the policy may affect individuals, let us

assume that there are only two types of specialized occupations, say scientific and

non-scientific, and the unskilled positions, and let us also reduce the number of

decision periods to two. In both the restricted and unrestricted environments, the

period 0 decision set of all individuals has three elements, j = 0, 1, 2, and choice

0 in this period implies that individuals have no further decision to make. Those

who choose either 1 or 2 start college in period 0, and have to decide whether to

complete it in period 1 or to dropout. The difference now is that in the restricted

case those who want to stay in college must keep the same major as the one previ-

ously declared, whereas in the unrestricted case they are free to move to the other

major.

The analogue of equation (1.11) in this case is:

V R
ijt (Iit) = −Cijt + δE

⎡⎢⎣max
dijt+1

⎛⎜⎝ dijt+1V
R
ijt+1 (Iit+1)+¡

1− dijt+1
¢
Wit+1 (0, Iit+1)

⎞⎟⎠ |Iit
⎤⎥⎦ (1.13)
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The gains of going to college in a given major, as measured by the difference

between the value function associated to a specific major and the value of going

to the labor market can be written as:

Vijt (Iit)−Wit (0, Iit) =

£
−Cijt − wi0t (Iit)

¤
+

δ
h
Wit+1

³
0, I

(j)
it+1

´
−Wit+1 (0, Iit)

i
+

δE

⎡⎣max
⎧⎨⎩0;maxdk

JX
k=0

dikt+1

³
Vikt+1

³
I
(j)
it+1

´
−Wit+1

³
0, I

(j)
it+1

´´⎫⎬⎭ |Iit
⎤⎦

V R
ijt (Iit)−Wit (0, Iit) =

£
−Cijt − wi0t (Iit)

¤
+

δ
h
Wit+1

³
0, I

(j)
it+1

´
−Wit+1 (0, Iit)

i
+

δE
h
max

n
0;
³
Vijt+1

³
I
(j)
it+1

´
−Wit+1

³
0, I

(j)
it+1

´´o
|Iit
i

In this form, it is easy to identify how the policy affects the individual welfare.

In both expressions, the first two lines of the right hand side are identical, and only

the last is different. In the first line, we see the total cost of going to college, which

contains the costs associated with the respective major plus the foregone labor

income in that period. In the second line, we have the (discounted) gain in the

continuation value of income in the unskilled sector, which is likely to be positive,

as experience in major j also affects abilities of type 0 and can make workers more

productive in that sector.

The third line resembles the familiar expression found in finance for option

values. Indeed, it captures the fact that only individuals currently enrolled in
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college will have the option of eventually staying in college from the next period

on, and it is in this term that the no-switching rule affects the payoffs. This is

equivalent to say that the policy effect could be measured by the difference in the

average option value of college in these two circumstances.

The Graph A1 shows the solution to the agent’s problem in these two environ-

ments in period 1 for an hypothetical individual who have chosen to take classes in

major 2 at period 0, and observed shocks �i1 = (�i11, �i12). In part (a), the optimal

choice conditional on the realization of the signal Gi21 would be the same in the

two situations if Gi21 ∈
¡
−∞, G_

¢
or Gi21 ∈ (G+,∞), but if it takes values in¡

G_, G+
¢
, then the optimal choice in the unrestricted world is no longer feasible if

the no-switching majors rule is imposed. The ex-post loss caused by the constraint

can be measured by the distance between the curves describing the restricted and

unrestricted values in period 1 for every realization of G. Now, if we move back

to period 0 we see that the ex-ante reduction in the payoffs associated to choice

2 are a weighted average of the discounted values of the period 1 valuation, for

every realization Gi21 ∈
¡
G_, G+

¢
, with the weights given by the distribution of

G conditional on Iit, FG|Ii1. In part (b), we see that heterogeneity in observables,

Xi, unobservables, Us
i1, and shocks, �i1 all cause the intercepts of the lines Vij1 to

shift, with no modification on their slopes. In particular, it may be the case that

for some combinations of
¡
Xi, U

s
i1, �i1

¢
, not all of the choices are relevant to the

agent’s problem, since they would not be optimal for any realization of Gi21.

Finally, and because in period 0 �i1 is still unknown to the agents and can

assume values in the whole space <J , we have that the payoffs associated to all

choices dij0 : J > 0 are affected by the imposition of the no-switching majors rule,

since changes of major could always be desirable with positive probability.
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The only group that is really unaffected by this constraint is the subpopulation

of individuals that would not go to college even in the unrestricted case. The reason

is that while the payoffs of start working right after high-school do not change

with this rule, all of the payoffs associated with the different majors diminish,

since the continuation value of these options are now maxima subject to an extra

restriction which is binding for some realizations of �i1. Therefore, if not going

to college is the optimal choice in the unrestricted case, so it is in the restricted

one, being the expected present value of income equals to Wi0 (0, Ii0) in both

cases. This fact is interesting (and generalizes to more realistic problems with

many majors and periods), because it allows us to separate the universe of agents

in a fraction that is potentially affected by the policy, and its complement which

is unaffected, suggesting the possibility of measuring the effects of the "treatment

on the treated " and the "average treatment effect", similar to the ones defined

in the experimental literature.

1.3 Empirical analysis

1.3.1 The data

The dataset used to estimate the model above and simulate the no-switching ma-

jors rule is the National Longitudinal Study of the High-School Class of 1972

(NLS-72, for short), which follows a randomly sampled cohort of 22654 Ameri-

can high-school seniors2 for 14 years, in a series of 7 interviews with retrospective

2. To be precise, the sample consists of an stratified sample of schools in which the country
was divided into 600 areas, and two schools were sampled at random in each region. Then, for
each school a random sample of 18 students was selected, and each individual was surveyed and
completed a battery of tests that included questions in mathematics, reading, mosaic compar-
isons, vocabulary, picture numbering and letter grouping, besides information on the students’
academic performance.
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questions to fill in the gaps in order to have a complete history of educational and

professional choices of the participants. The dataset is also complemented by post

high-school transcript files of those who took higher education courses afterwards, a

battery of cognitive tests applied to the students before the first wave of interviews

(which is particularly good, since the results are not distorted by significant hetero-

geneity in age and level of schooling), and information about the school, military

service, and other data they could collect from other sources. The questionnaires

are especially rich in information about majors taken, dropouts, and characteristics

of the jobs for those who worked in this period, as well as demographic character-

istics. The first five waves of this panel contain similar questionnaires, but critical

methodological changes took place in the last survey. This fact, together with

the sharp increase of attrition verified between the last two waves of the panel3,

implied in the exclusion of this last wave of the analysis.

In Table 1.1 we see the demographic profile of college graduates, college dropouts

and high-school graduates. According to the table, women are less likely to go to

college than men, and among college students, the white are less likely to graduate

than the non-white. When we divide the sample by the maximum level of schooling

of the individual’s parents, a clear pattern emerges, suggesting that the children of

more educated parents have a much higher probability of going to college and com-

plete it than the children of low educated people. Finally, we also see that agents

who finish high-school at earlier ages are more likely to go to college, whereas older

high-school seniors are more likely to start working right after graduation in this

cycle.

3. The data is carefully collected, with a loss of less than 20% of the individuals between 1972
and 1979. In the last wave, however, only 65% of the original sample was present, which is still
low for this type of data, but may bring extra selectivity problems to the analysis.
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Table 1.1: Demographic profile of college graduates, college dropouts, and high-
school graduates

              

    
Total College 

Graduates
College 

Dropouts 

High-
School 

Graduates  

Not 
Identified 

Gender      
women 50.5 25.4 30.0 31.7 12.9 

men 49.5 28.0 30.8 27.5 13.7 
Race 

white  22.4 18.1 34.6 31.1 16.2 
non-white 77.6 29.4 29.2 29.1 12.4 

Parent's 
education 

< high-school 21.2 11.4 25.5 46.2 16.9 
high-school 36.0 18.7 30.6 35.8 14.9 

some college 22.0 31.6 36.1 20.6 11.7 
4-year college 11.1 50.7 31.2 10.9 7.2 

  
graduate 
school 9.7 54.7 28.7 7.9 8.7 

Source: NLS-72 
 

In Table 1.2, we see the college enrollment by groups of majors4. In every year

of the panel, scientific courses seem to attract about a half of the students, but

as the time passes, enrollment in non-scientific courses increases systematically.

The proportion of degrees issued in scientific majors is also slightly higher than

the non-scientific ones, suggesting the students of these majors are more likely to

finish their programs.

Although students may change majors at any point in time, we can just add

up the observed transitions in order to have a synthetic measure of the probability

that a student enrolled in a given major moves to a different position in the next

4. the exact composition of these groups are presented in Table A1, in the appendix
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Table 1.2: Enrollment in college, by declared major

              

Year Natural 
Sciences 

Social 
Sciences

Sciences
Total Business Education 

Non-
Sciences 

Total 

1972 
29.5 24.4 53.9 19.3 26.8 46.1 

1973 27.4 25.3 52.7 21.3 26.0 47.3 
1974 29.1 26.4 55.5 21.8 22.7 44.5 
1975 28.5 27.1 55.6 22.7 21.8 44.4 
1976 31.0 24.9 55.9 24.1 20.0 44.1 
1977 28.7 23.4 52.1 25.4 22.5 47.9 
1978 28.7 21.6 50.3 28.0 21.6 49.7 
1979 29.7 20.6 50.3 29.6 20.2 49.7 

Major of 
Graduation 25.3 28.9 54.2 19.2 26.6 45.8 

Source: NLS-72 
 

period. In the third table, we see that, overall, Natural Sciences students are more

likely to stay put in their current choices, whereas social sciences and business

students are more willing to dropout of college. The fraction of the students that

stay in college but change majors between periods ranges from 7.3% (business) to

14% (education), and except for those coming from Education, Business seems to

be the main destination of the movers. Table 1.4 complements these information

by showing that dropout rates decrease consistently over the first 5 years of college

(which is supposed to last 4 years), and then increase among the delayed students.

Switching is particularly intense between the second and third years of college, and

the rates are more volatile in non-scientific courses.

As mentioned above, the dataset contains an interesting battery of tests that

quantifies different abilities of the students. Even though these talents cannot be

seen as the empirical counterparts of the hidden abilities modeled in the previous
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Table 1.3: Transition probabilities, average across years

            

From/ To Dropout Natural 
Sciences

Social 
Sciences Business Education 

Nat. Sciences 
30.2 60.3 3.3 3.1 3.1 

Soc. Sciences 31.8 2.6 56.3 4.1 5.3 
Business 36.4 2.0 3.1 56.3 2.2 
Education 30.9 5.4 5.6 3.0 55.1 

 

Table 1.4: Transitions conditional on the number of years of college education

Grade 
Transition 

From Sciences, to: From Non-sciences, to: 

Sciences Non- 
sciences dropout   Sciences Non- 

sciences dropout 

1st-2nd 72.1 10.9 16.9 10.8 69.1 20.0 
2nd-3rd 68.6 13.4 18.0 17.4 60.9 21.7 
3rd-4th 74.8 10.4 14.8 10.8 72.7 16.5 
4th-5th 76.2 10.4 13.3 7.7 77.6 14.8 
5th-6th 77.0 9.1 13.9 7.9 79.0 13.1 
6th-7th 73.4 9.9 16.7 7.0 77.0 16.1 
7th-8th 73.3 5.1 21.6   7.2 71.3 21.5 

Source: NLS-72 
 

section, it may bring us some illustration about how important the features of the

model can be. The tests are divided in questions and exercises about Mathematics,

Vocabulary, Mosaic Comparison, and Figure Number, and Table 1.5 below shows

the estimated correlation between these parts. The first interesting observation

is that correlation is in general positive, but relatively low, except in the case

of Math-Vocabulary, where it gets close to 50%, suggesting students may have

different strengths and weaknesses that could not be captured by a scalar index
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of human capital (as in Arcidiacono, 2004). Second, we see that the subsample of

individuals who have switched majors during college displays systematically higher

correlations than those who did not switch, which is in the spirit of the learning

process assumed before, where correlations between talents may play an important

role in predicting switching.

Table 1.5: Correlations between test scores

            

Total Math Mosaic 
Comparison 

Figure 
Numbering Vocabulary 

Math 1 
Mosaic 

Comparison 0.40 1.00   
Figure 

Numbering 0.42 0.38 1.00  
Vocabulary 0.59 0.28 0.31 1.00 

Non-Switchers         
Math 1.00 

Mosaic 
Comparison 0.34 1.00   

Figure 
Numbering 0.31 0.27 1.00  
Vocabulary 0.49 0.18 0.20 1.00 

Switchers         
Math 1.00 

Mosaic 
Comparison 0.39 1.00   

Figure 
Numbering 0.41 0.38 1.00  

  Vocabulary 0.57 0.28 0.30 1.00 

 

Another key aspect of the theoretical model that enriches the analysis is the

presence of a dynamic selection bias, such that as new decisions are made, the

survivors are likely to be the individuals who either had a very high perceived

ability at time 0, or who have received good signals afterwards. The Graph A3
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aims to illustrate this process, by constructing the average of the test scores in the

population of students who stay in college up to a given period. All of the scores

were standardized such that the mean was brought to zero and the variance to one

to facilitate comparisons. First, notice that the average test scores in all batteries

were higher among those who entered in college than those who did not (since the

weighted average of both should be zero, this is seen by the fact that the averages

in period one are all positive). As time passes, the students with the lowest test

scores have higher probability to dropout of college, so that the average among

the stayers increases with the years. Second, different majors select people with

different specific abilities. While the Natural Sciences students display the highest

average in Math, it is the Social Sciences students who have the best vocabulary

skills.

1.3.2 The variables used in the econometric exercise

The goal of this part is to describe how the variables used in the estimation of the

structural model introduced in Section 1 were constructed. The data needed in this

procedure contains the observable characteristics of the agent determined outside

of the model, Xi, the signals that arrive after the first period to those who decided

to go to college, Gijt, the wages earned after the last period of education, wijt,

and the decision history of the sample members, dijt. Notice that the observables

are divided according to their role in the model, so that variables Xw
i ⊆ Xi denote

attributes that are assumed to influence wages, Xc
i ⊆ Xi help to determine the

costs of going to college, and X
g
i ⊆ Xi affect the signals.

Observables:

All of the observable traits are constructed directly from answers to specific
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questions of the questionnaires. The exogenous determinants of wages are sex

(dummy variable that is 1 iff the individual is male), race (dummy variable indi-

cating whites), and experience, defined as the number of years after the last period

of education.

The cost components include also sex and race, but it also contains the highest

educational level of the parents (the reason is that more educated parents may help

the students to learn, have books and other materials needed in college already at

home, etc). Parental education was constructed as follows: the surveys ask, for each

parent, to which of 5 categories (less than high-school, high-school, some college,

college, graduate level) the parent belongs. I then took either the maximum of

this variable between the two parents, or the education of the non missing parent,

when information about the other was missing. Finally, I assumed that a linear

index ranging from 1 to 5 could summarize the information contained in these 5

discrete, qualitative levels.

In the case of grades, I included only sex and race as potential explanatory

arguments.

Since the same questions were asked repeatedly in the successive waves of the

panel, I tried to solve eventual contradictions by using the most frequent informa-

tion when at least N − 1 waves agreed about the respective answer.

Wages:

In the survey, participants are asked about their weekly labor income with the

typical reference date being at the beginning of fall. Since the empirical counter-

part of the model takes in general one year as the correspondent to one period, I

multiplied the reported income by 365/7 in order to have an approximation of the

yearly earnings. Zero values for this variable were counted as missing information,



27

and the annualized income was divided by 10,000, because the empirical estimation

heavily relies on numerical approximations that may become more accurate if the

magnitudes of the different variables involved in the calculations were similar.

Decisions:

Every person was given a value for three variables, dijt : t = 1, 2, 3. I first used

all of the information I found in the surveys to separate the individuals who had

never gone to college. Because the questionnaires are quite long, it is plausible that

some college students decide to say they are not in college just to avoid answering

the educational part of the survey. For this reason, I created a category of unde-

fined college status to label all of the people who showed contradictory answers to

these questions. Moreover, some people also reported to be in college, but refused

to tell the major, and these were also included in the undefined block. Finally, I

accepted as valid college enrollment in major j all individuals who reported to be

taking classes either in a 4-year college program, or in a 2-year academic (mostly

community) college program, or in a 2-year program whose credits could be used

in a 4-year college program. The reason to include 2-year students is that, since

they can potentially use their credits in a 4-year program (and since I am not mod-

eling explicitly the choice of school), they still keep the option of transferring and

eventually getting a 4-year college degree. Finally, the key variable used to classify

students into majors was the field of study (FOS) asked in every survey, and for

every year. These fields were first grouped into 79 broader categories, detailed

described in Table C1 in the appendix, with the respective original FOS codes

that compose each group. The 79 "majors" were than aggregated into 4 areas:

Natural Sciences (and other courses intensive in Math and/ or Biology), Social

Sciences (together with humanities and arts), Business (and communication), and
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Education (every course oriented to form high-school teachers). Due to computa-

tional restrictions, I further grouped the first two of these into a larger definition

of scientific majors, and the last two were labeled as Non-Sciences.

There is an important detail worth to be mentioned here. College programs

typically last four years, whereas in general students declare majors only three

times. Instead of extending the model to have a fourth decisional period (where

the only choices would be stay put in college or dropout), I assumed that for

those who went to college, the two first years corresponded in fact to one period,

which generates an asymmetry whose consequences were not yet investigated, but

should certainly be in future steps of this research. Crucial to this decision was the

enormous computational burden that an extra period would bring, with no clear

compensation in terms of results.

Signals:

The main source of information available in the data about information that

arrived during college and that could influence the students’ decisions is the tran-

script file. There, we can find the grades obtained by the students during college,

for every single discipline, which is also labeled according to its main subject, as

defined by the Classification of Instructional Programs (CIP), together with the

exact period the course was taken, and the name and FICE5 code of the school,

among other relevant items. However, there are two difficulties to be circumvented

in order to create an empirical counterpart that satisfies the model proposed in

this article. First, the choice of school is not explicitly modeled, and it is well

known that there is selectivity in the matching between students and schools, such

that better schools usually get better students and vice-versa. In this sense, a very

5. Federal Interagency Committee of Education
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good grade in a major may be a good signal that an individual is suited to that

career if it comes from a good school, but a poor signal if it comes from a school

that does not have a good reputation. Second, among schools of the same level

the grading policy may be heterogeneous. If a school has its marks very concen-

trated around one point (say, the maximum), getting a grade close to that point

is not informative about your talent, whereas if the grading distribution is more

balanced, the opposite happens.

The solution I propose is to compare individual grades obtained in courses

classified as typical of the declared major with grades obtained in the remaining

courses. If in a given period the grades of the first are much better than the grades

of the last, this means that the student indeed may have a clear comparative

advantage in that major, and since both grades are obtained in the same school,

this procedure minimizes the influence of specific grading policies on the signal.

To be precise, I first constructed a subsample of college graduates, and assign to

each observation a major, according to the broader 79-category definition. Then,

I merged these data with the transcript file, making sure I kept only transcripts

from the college the individual got his/ her first degree (each person may have

up to 7 transcripts in the dataset). The third step is to construct a list of course

subjects each individual studied, being cautious to avoid repetition (e.g., if one

took calculus I and calculus II, both courses will appear in the transcript with the

same CIP code). Then, within each major I took the frequency that a CIP code

appears in the individual transcripts. If it is greater than 25%, I classify this CIP

as typical of that major, and if not, as a distribution. Next, and going back to the

whole subsample of college students, I computed, for each period, the partial GPA

relative to the typical courses and the partial GPA of the non-typical courses, and
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the difference between these two averages would be my first approximation to the

Signal students received in that period. The problem with this index is that it only

provides an indicator of relative ability, that could be important to decide whether

to stay in the same major or to switch, but does not contain much information

about the absolute level of that ability, which could be important in the decision

of staying in college or dropping out (and as we saw in the last graph, individuals

with lower general abilities are more likely to leave college). For this reason, I

defined the average between the Math and Vocabulary scores in the battery test

as a measure of general ability, and the variable I used as the signal ended up with

the form:

Gijt =

µ
Math+ V ocab

2

¶µ
1 +

GPAjt −GPA−jt
GPAt

¶
where GPAjt and GPA−jt stand for the average grade obtained in courses typical

and non-typical to major j, respectively, and GPAt is the total GPA obtained in

period t. Finally, some individuals reported to be attending more than one college

institution in the same period. In these cases, I first discarded information from

2-year colleges when the person was enrolled in at least one 4-year institution.

If more than one school was a 4-year college, I computed the signal in both of

them, and then took the average weighted by the number of courses taken in each

institution.

1.4 Empirical strategy and results

In this section I propose a method to estimate the theoretical model described in

section 2, and present the respective results obtained from the NLS-72 data. The
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estimation is carried out by Markov Chain Montecarlo (MCMC), which has three

main advantages over other methods: (i) it does not use minimization, which is

computationally burdensome; (ii) it allows us to use eventual prior information

to complement the distribution functions that form the likelihood of the model;

and (iii) estimation and simulation can be performed together in an integrated

algorithm.

1.4.1 Empirical strategy

MCMC - overview

As every Bayesian method, MCMC treats a K− dimensional vector of parame-

ters, Υ, as if each of its components were a random variable itself. The stan-

dard algorithm consists of a sequence of draws of each element (or block of ele-

ments), Υk from its posterior distribution, conditional on the other parameters,

Υk− = (Υ1, ...,Υk−1) and Υk+ = (Υk+1, ...,ΥK) and the data, Z. In our case,

we also use data augmentation to facilitate the procedure, i.e., we not only draw

the parameters that appear in the model, but also some of the latent variables

(as if they were individual-specific parameters). A typical example of this class of

algorithms would be:

(i) set the seed Υ(0)

(ii) start iteration 1 by drawing Υ(1)1 from the conditional posterior distribution

f
³
Υ
(1)
1 |Υ(0)

1+
, Z
´
, then sample Υ(1)2 from f

³
Υ
(1)
2 |Υ(1)

2− ,Υ
(0)
2+

, Z
´
, and at every k,

sample Υ(1)k from f
³
Υ
(1)
k |Υ(1)

k− ,Υ
(0)
k+

, Z
´

(iii) at iterationm, repeat the step above, using the most recent sampled values

available for the elements of Υ to sample Υ(m)k from f
³
Υ
(m)
k |Υ(m)

k− ,Υ
(m−1)
k+

, Z
´

The statistical theory behind this system says that if the conditional posteriors
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form proper densities, this sequence of draws converges to the ergodic distribution

of the chain, which is precisely the full posterior distribution of (Υ, Z) 6. However,

because the seed used to start the chain does not need to belong to the "heart" of

the support of posterior (the subset of its support that contains the most frequent

realizations of Υ), the first iterations (called the "warm up phase") of the chain

not necessarily belong to its ergodic distribution, and must be discarded in the

statistical analysis.

The posterior distribution of the parameters conditional on the data is obtained

by applying the Bayes theorem to the joint distribution of Z and Υ :

f (Υ|Z) = f (Υ, Z)

f (Z)
=

f (Z|Υ) f (Υ)
f (Z)

∝ f (Z|Υ) f (Υ)

In words, the conditional distribution of Υ on Z is proportional to the prod-

uct of the likelihood function, f (Z|Υ), and the unconditional (also called prior)

distribution of the parameters, f (Υ). Moreover, we can also rewrite it as:

f (Υ|Z) = f (Υk|Υk−,Υk+, Z) f (Υk−,Υk+|Z)

f (Υ) = f (Υk|Υk−,Υk+) f (Υk−,Υk+)

⇒ f (Υk|Υk−,Υk+, Z) ∝ f (Z|Υ) f (Υk|Υk−,Υk+)

Now, the econometrician can include in the function f (Υk|Υk−,Υk+) all of

the information that may be relevant and not already present in the likelihood,

f (Υ|Z). Finally, the right hand side of the expression above can always be written

as the product of a (minimal) term that includesΥk by a term that does not include

6. For a comprehensive textbook about MCMC, see Lopes and Gammermann (2007).



33

it, i.e.,

f (Υk|Υk−,Υk+, Z) = K (Υk,Υk−,Υk+, Z) f (Υk−,Υk+, Z)

If the expression for K (Υk,Υk−,Υk+, Z) coincides with the kernel of a known

distribution in Υk for given (Υk−,Υk+, Z), then we can complete this distribution

and have directly the conditional posterior f (Υk|Υk−,Υk+, Z), from which we

can sample Υk. This is called the Gibbs sampler procedure, and should be used

whenever it is possible, since it provides the fastest convergence of the chain.

If K (Υk,Υk−,Υk+, Z) does not form the kernel of a known density, however,

then some other sampling strategy must be adopted, the most popular being the

Metropolis -Hastings (MH) algorithm. The MH technique is essentially an impor-

tance sampling procedure, where, at iteration m, the (block of) parameters eΥk

are sampled from some known distribution fp (Υk|.) proposed by the analyst, and

then a criterion consistent with the ergodic properties of the chain is used to decide

whether to accept the new draw or to keep the previous draw in that iteration,

i.e., whether Υ(m)k = eΥk or Υ
(m)
k = Υ

(m−1)
k . In the general case, it is shown that

the proposed density function may depend not only on the remaining parameters

and data, but also on the previous draw of the parameter k, which means that

fp
³
Υ
(m)
k |.

´
= fp

³
Υ
(m)
k |Υ(m)

k− ,Υ
(m−1)
k+

,Υ
(m−1)
k Z

´



34

, and the criterion should be

let α =
f
³eΥk|Υ

(m)
k− ,Υm−1

k+
, Z
´

fp
³eΥk|Υ

(m)
k− ,Υ

(m−1)
k+

,Υ
(m−1)
k Z

´/ f
³
Υ
(m−1)
k |Υ(m)

k− ,Υm−1
k+

, Z
´

fp
³
Υ
(m−1)
k |Υ(m)

k− ,Υ
(m−1)
k+

, eΥkZ
´

Υ
(m)
k =

⎧⎪⎨⎪⎩
eΥk if α ≥ U

Υ
(m−1)
k if α < U

where U is a random number sampled from a uniform distribution. It is clear

that if α ≥ 1, then Υ
(m)
k = eΥk regardless of the realization of U , since this is the

upperbound of the uniform’s support. It is also easy to see that if

fp
³eΥk|Υ

(m)
k− ,Υ

(m−1)
k+

,Υ
(m−1)
k Z

´
= f

³eΥk|Υ
(m)
k− ,Υm−1

k+
, Z
´

then α = 1 and all draws are accepted, which makes the Gibbs sampler a particular

case of the MH.

Even though every distribution fp with a support at least as large as the

support of f (Υk|., ., .) is a valid choice for the proposal, some of them are more

convenient, in order to speed up convergence. Ideally, we should pick fp as similar

as possible as f (Υk|., ., .), but similarity is not easily defined. There are two ways

of electing fp that are very common in the literature. The first, called random-

walk, consists on a symmetric distribution (if it is possible to find one) centered

on the previous draw of the respective parameter, i.e.:

fp
³eΥk|Υ

(m)
k− ,Υ

(m−1)
k+

,Υ
(m−1)
k Z

´
= h

³eΥk −Υ
(m−1)
k ,Υ

(m)
k− ,Υ

(m−1)
k+

, Z
´

, for some function h. The two advantages of this function are that (i) α simplifies
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to

α = f
³eΥk|Υ

(m)
k− ,Υm−1

k+
, Z
´
/f
³
Υ
(m−1)
k |Υ(m)

k− ,Υm−1
k+

, Z
´

, and (ii) h usually has some hyperparameters that characterize it, and which can

be calibrated in order to keep the rate of acceptance of new draws satisfactory.

The leading example of this class is a normal distribution with mean Υ
(m−1)
k , and

variance V . If V is low, the new draw will probably be very close to the previous

draw
³
V → 0⇒ eΥk → Υ

(m−1)
k

´
, and α will approach 1, increasing the acceptance

rate of new draws. The drawback is that if S is too low, the sequence of draws³
Υ
(1)
k ,Υ

(2)
k ...

´
will take more iterations to cover the whole parameter space, and if

the initial value is far from the interval that concentrates most of the realizations of

this variable, it will take longer to find a thresholdM after which the realizations ofn
Υ
(m)
k

o
m>M

can be a reasonable approximation to the ergodic distribution of Υk.

Geweke (1989) suggests that an acceptance rate around 45% for scalar variables

and 21%-25% for blocks of parameters (depending on the dimension of this block)

maximize the speed of convergence of the chain if the proposed distribution is the

normal - random walk.

The second popular choice of fp relies directly on the functional form of the

posterior. If f
³
Υk|Υ

(m)
k− ,Υm−1

k+
, Z
´
contains a piece that can be identified as the

kernel of a known distribution, then we should importance sampling from this

distribution, i.e.: if

f
³
Υk|Υ

(m)
k− ,Υm−1

k+
, Z
´
= K

³
Υk|Υ

(m)
k− ,Υm−1

k+
, Z
´
h
³
Υk,Υ

(m)
k− ,Υm−1

k+
, Z
´

, and K is the kernel of the density ef , then we should make fp = ef . The idea is
that since K comes directly from the true posterior, it could be more similar to
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f
³
Υk|Υ

(m)
k− ,Υm−1

k+
, Z
´
than other competing alternatives. Again, by doing this α

simplifies to

α = h
³eΥk,Υ

(m)
k− ,Υm−1

k+
, Z
´
/h
³
Υ
(m−1)
k ,Υ

(m)
k− ,Υm−1

k+
, Z
´

In my estimation, two parameters are fixed exogenously, as if I had the prior

information that they would assume a specific value with probability 1. These are

the discount factor δ, set to 0.9, and the variance of the unobservable component

of costs, S = 10. They were fixed because it helps to get a smoother evolution of

the chain towards convergence, and because I still do not have a formal proof these

parameters are identified from the data. I provide a small robustness check in the

appendix, by replicating the main exercise of this section with different values of δ

and S, and the main conclusions are not affected, although a more careful analysis

of the role of these parameters should be taken in the future.

The blocks of quantities that form the chain are then the parameters

Ω0,Λ0,
n
ρj , Aj , β

w
j

oJ
j=0

,
n
θj , σj , ξj , β

g
j , β

c
j

oJ
j=1

, and the latent variables Us
i0, vi0,

nbVijtoJ
j=1

;τt=1. Here some reparameterizations

are worth to notice. First, I sample ξj =
ϕjθjj
σj

, instead of the original parameter

ϕj . The reason is that this combination of parameters appear very often in the

chain, causing the successive draws of
¡
θjj , ϕj , σj

¢
to be very correlated, and

therefore slowing down the process of convergence. It is easy to see that there is a

1-1 correspondence between
¡
θjj , ϕj , σj

¢
and

¡
θjj , ξj , σj

¢
. Second, I augment the

data by the (J − 1) latent variables bVijt = Vijt (Iit)− Vi0t (Iit) : j > 0, instead of

the J variables Vijt (Iit). In this case, we know from the random utility models that
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a choice between J discrete actions can be fully described by J − 1 unobservables,

and the choice of
nbVijto

j>0
also revealed to be more stable than the alternative©

Vijt
ª
j>0 (that in principle could be used, after discarding the redundant Vi0t).

Let Υi denote the subset of Υ composed by the latent variables, and Υ∗ the

remaining parameters. Then the individual contribution to the full posterior could

be written as:

Fi = fi (Z|Υ) fi (Υi|,Υ∗) =⎡⎣Y
t>τ i

fw
¡
wit|Us

i0, Gi1, Gi2, Gi3, Xi,Υ
∗, dij0 = 1, dik1 = 1, dil2 = 1

¢⎤⎦ ∗
fG
¡
Gi2|Us

i0, vi0,Xi,Υ
∗, dij0 = 1, dik1 = 1, dil2 = 1

¢1−di02⎡⎢⎢⎢⎢⎣
1
³bVil2 > maxn0,maxm6=l bVim2o´ ∗

fbV
³bVi2|Us

i0, Gi1, Gi2,Xi,Υ
∗, dij0 = 1, dik1 = 1

´
∗

fG
¡
Gi2|Us

i0, vi0,Xi,Υ
∗, dij0 = 1, dik1 = 1

¢
⎤⎥⎥⎥⎥⎦
1−di10

⎡⎢⎢⎢⎢⎣
1
³bVik1 > maxn0,maxl 6=k bVil1o´ ∗

fbV
³bVi1|Us

i0, Gi1,Xi,Υ
∗, dij0 = 1

´
∗

fG
¡
Gi1|Us

i0, vi0,Xi,Υ
∗, dij0 = 1

¢
⎤⎥⎥⎥⎥⎦
1−di00

1

µbVij0 > max½0,max
k 6=j

bVik0¾¶ fbV
³bVi0|Us

i0, Xi,Υ
∗
´
∗

fUs (Us
i0|Υ∗) fv (vi0|Υ∗)

where the pieces of this distribution are:
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fUs (Us
i0|.) = N (0;Ω0)

fv (vi0|.) = N (0;Λ0)

fG (Git|.) = N

Ã
β
g
jX

g
i +

Ã
t−1Y
s=0

θksj

!
ξjσj

³
Us
ij0 + vij0

´
;σj

!
fbV
³bVit|.´ = N (−βcXc

i + δE (Vit+1|dit, Iit)− Vi0t;SxIJ−1)

fw (wit|.) = N

⎡⎣ JX
j=0

dij3

³
Aij (t− τ i) + βwj X

w
i + Us

ij3; ρj

´⎤⎦
where ks = k ⇔ diks = 1. Furthermore, the indicator functions of dijt =

1, 1
³bVijt > maxn0,maxk 6=j bVikto´ impose truncations to the normal functions

fbV (.|.). The full posterior is then given by the expression:

f (Υ|Z) = fΥ (Υ
∗)

NY
i=1

Fi

where the prior distribution is assumed to be in general non-informative, except in

the case of θj , which gets a uniform prior ranging from 0 to θ, with θ being a suffi-

ciently high real number (in practice it just intends to impose the restriction that

θ is non-negative. The uniform with θ → ∞ places a condition indistinguishable

to an indicator1
¡
θj > 0

¢
in the sampling procedure). The precise expressions for

the conditional posteriors of each block of parameters is left to the appendix.

After all, I was able to use the Gibbs sampler for the blocks: Ω0,
©
ρj
ªJ
j=0
,

and the latent variables
³
vi0,

nbVitoτ i
t=1

´
. A pure random-walk MH was used for

the blocks
n
βwj , β

g
j , θj ,Λ0

7
o
and the latent vector Us

i0, and a pure procedure tak-

ing part of the posterior as the proposed distribution was used for the blocks©
σj
ªJ
j=1. Finally, a mixture proposal with positive probabilities for both the ran-
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dom walk and the "part-of-the-posterior" method was chosen to sample the blocksn
βcj , ξj , Aj

o
8.

The "Emax" problem and the convergence of the chain

In the whole literature of dynamic discrete choice models, the most difficult

part is to deal with the object E (Vit+1|dit, Iit) = Emaxk (Vikt+1|dit, Iit), which

in general does not have an analytical form (in my case only E (Vi3|di3, Ii3) does),

and involves a multidimensional numerical integral with J − 1 coordinates. If the

problem has finite horizon, as it is my case, we should also integrate in the tempo-

ral direction, which multiplies the dimension by the number of periods between the

current and the terminal ones. In the case of the exercise presented in this paper,

with only 3 choices per period and 3 decision periods, the period 0 valuations in-

volve an 8-dimensional integral, that has to be computed twice for each individual,

and for all of the N observations, at least once per update of a parameter block

during a single iteration m. This is obviously computationally burdensome and

every work in this area has to be careful in order to choose the integration method

that is at the same time somehow precise and feasible. Solutions found elsewhere

include the spline approximation of Emax evaluated on a grid of possible real-

izations of the unobserved shocks, as proposed by Keane and Wolpin (1994), but

which also required the unobservables to be non-persistent (unlike Us
i0, vi0); the

choice of particular functions that deliver an analytical solution or a solution close

to be analytical (as in Rust 1987), transformations of the maximization problem

in order to obtain variables that are sufficient statistics to the Emax function

of to the solution of the individual maximization problem (as in Hotz and Miller,

8. In this case I first draw a uniform quantity and, if it is above a predetermined threshold,
I use the random walk and otherwise the alternative method. I thank Hedibert Lopes for this
suggestion.
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1993), the use of previous computations of E
³
V
(m−s)
it+1 |dit, I

(m−s)
it

´
to approximate

E
³
V
(m)
it+1|dit, I

(m)
it

´
(as in Imai(2007) and Norets(2006)), among others. Unfortu-

nately I could not find, among these solutions, one that could be directly applied

to my case, and I conservatively decided to use Gauss-Hermite quadratures with

7 nodes in each dimension to approximate the Emax function.

It turns out that a trick can also be used in the particular case treated here.

The multidimensional Gaussian quadrature integration usually requires that, for

a given integrand of the form h (z1, ..., zK ;X), the integral

Z
K
h (z1, ..., zK ;X) dz1, ..., dzK

be calculated from a weighted average of the function h (.) evaluated on a grid

of points
©
zq
ªQ
q=1 that solves the Q

th−order system of Gauss-Hermite polynomi-

als. Therefore, in principle QxK evaluations are required to approximate this

integral, but in our particular case, the integrand has the form: h (ε, �; Iit) =

max
©
V i0t+1 (εit+1) , V i1t+1 (εit+1) + �i1t+1, ..., V iJt+1 (εit+1) + �iJt+1

ª
. We can

then first condition on ε (which is one-dimensional) and compute the integral over

�, and then integrate the ε component out. But notice that, if on a given node¡
zq1, ..., zqJ

¢
, we find out that

h
¡
εit+1, zq1, ..., zqJ ; Iit

¢
= max

⎧⎪⎨⎪⎩ V i0t+1 (εit+1) , V i1t+1 (εit+1) + zq1,

..., V iJt+1 (εit+1) + zqJ

⎫⎪⎬⎪⎭
= V ijt+1 (εit+1) + zqj

i.e., on that combination of nodes choice j was the maximum, then it is also true

that whenever we choose another z0qj > zqj , keeping the other coordinates con-



41

stant, the maximum will still be V ijt+1 (εit+1)+ z0qj , and whenever we reduce one

or more of the coordinates k 6= j, keeping the others no bigger than
¡
zq1, ..., zqJ

¢
,

j will also be the maximum. In the integral procedure, we can take advantage of

this property by doing the following strategy: First, sort V ijt+1 (εit+1) from the

highest to the lowest. Call the highest l = 1 (it does not matter its original label

j). Then, find, for every node zl=1q correspondent to the respective shock associ-

ated to decision l, the thresholds that would make it no longer the maximum. By

doing this, we find all combinations of the nodes z−l
q0 associated to the remaining

alternatives that would be dominated by V ilt+1 (εit+1) + zlq, for every q. We can

than just sum the weights associated to the combinations of
³
zlq, z

−l
q0

´
, and multi-

ply it by V ilt+1 (εit+1)+zlq, in order to have its contribution to the integral. After

finishing with l = 1, go to l = 2 (the second highest), and find the thresholds,

being careful not to include the comparisons with l = 1 that already proved to be

dominated by the first choice, and keep going until the lowest alternative. This

simple idea alone speeded up the running time of the computational code in J − 1

times.

The second remarkable difficulty in the estimation of the proposed model is to

find proposal densities that can be efficiently used in the MH steps of the sampling

procedure. The main problem found in this particular case was that one of the

latent variables that had to be sampled to augment the data could not be Gibbs

sampled. When only parameters that are common to the whole population have

to be sampled with MH algorithms, the main consequence in terms of convergence

is that it takes more iterations than the Gibbs sampler, and the literature provides

a number of tricks that can be used to circumvent this problem, such as the use of

random walk importance sampling with calibration of the variance to achieve the
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desired acceptance rate of the MCMC blocks. It turns out that it is much more

difficult to monitor the evolution and the acceptance rate of individual-specific

"parameters", such as the latent variables used to augment the data, and even

though we can control the overall number of observations that have their latent

variables updated in a single iteration, it is possible that it is the same individual

that has been always updated, while others get stuck for many iterations in the

same realization of the latent variable. Not surprisingly, the most volatile part of

the chain was the distribution of Us
i0, which in the case of the white males exposed

in the last section, seemed to have converged only after 30000 iterations, while

most of the parameters did not show substantial changes in their distributions

since iteration 15000. Solving computational problems is a major step to allow

us to divide majors into a larger number of categories, thus better capturing the

impacts of the no-switching majors rule.

Simulations and other exercises

In this research, we not only desire to estimate the structural parameters of the

theoretical model proposed in Section 1, but also to perform some decompositions

(of wages, to see the relative importance of signal information, human capital

accumulation and labor market segmentation related to college experiences; and

of value functions, to see the magnitudes of the global cost component, the gain

associated to the stream of wages in the unskilled sector with and without college,

and the option values) and simulations (to evaluate the impact of the no-switching

majors rule on social welfare and on the college enrollment and graduation). These

exercises can be fully integrated to the MCMC procedure, as it will become clear

now.

First, notice that the referred decompositions take an endogenous variable, y =
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y (Υ, Z), and decompose it additively, as y = y1 (Υ, Z)+y2 (Υ, Z)+ ...+yK (Υ, Z).

Since y is a function of random variables, it is a random variable itself, with un-

derlined distribution fully derived from the joint distribution of (Υ, Z), and in the

same spirit, the distributions of y1, ..., yK are also fully described by the same joint

distribution. We know that the sequence of draws of Υ(m) form a sample coming

from this joint distribution, and therefore, if we keep computing (and collecting)

ym1 , ..., y
m
K , for every iterationm > M (after the warm up phase), we should end up

with vector representing the distributions of y1, ..., yK . Similarly, the policy eval-

uation is carried out by comparing value functions of the type Vij0 (Υ, Z), with

its counterparts in the world where the no-switching majors restriction is present,

V R
ij0 (Υ, Z), and again we can keep computing

³
V
(m)
ij0 (Υ, Z) , V

R(m)
ij0 (Υ, Z)

´
until

we have a valid representation of the distributions of these quantities (the same

is true for the difference W (Υ, Z) = maxj
©
Vij0 (Υ, Z)

ª
− maxj

n
V R
ij0 (Υ, Z)

o
).

Decisions are just the solutions of the individual maximization problems, and can

also be represented as dijt = dijt (Υ, Z), so that the distributions of the policy

effects on enrollment rates and graduation rates can be done likewise.

1.4.2 Results

Preliminary warnings

The results presented in this section use a selected subsample of white males com-

ing from the NLS-72 dataset, with 1097 individuals that satisfied the following

requirements: (i) if the agent has ever gone to college, it must be a single spell

starting either in 1972 (the year after graduation in high-school), or 1973; (ii) if

one chose not to go to college or dropped out of it before graduation, he/ she

must also have reported not to have the intention to pursue further education at
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college level in the remaining waves of the panel; (iii) no missing/ contradictory

information about the explanatory variables Xi; (iv) if the person has ever had a

college experience, information about grades must be available, as well as the test

scores in the battery test. 15% of the schools refused to send transcripts to the

NLS-72 committee, and not every student took in, every period in college, classes

(with valid grades, which excludes pass/fail) both in subjects related to the major

and in subjects unrelated to it; (v) after the first period in the labor market, the

individual must have had at most one year with missing information on wages. The

reason of this selection is twofold: it reduces the sample size, which helps to make

it feasible the time required to run the code, and it makes the sample as similar as

possible to the population described in the model. Of course, the cost is that the

results are not necessarily valid for the whole population, as this subsample may

suffer from additional selectivity issues.

Second, even though the primary information about majors is organized in

the NLS-72 data according to the FOS codes in more than a hundred majors, we

are not able to deal with this many choices per period, so that we have to group

majors into broader categories. Since it is plausible that most of the changes of

major occur between fields relatively similar to one another, and which would be in

the same broader category, any evaluation of restrictions to major switching would

miss the movements that happen within categories, so that the impact of this

restriction on welfare and other economic variables is likely to be underestimated.

Third, I managed to have what I thought was the best approximation of a signal

that could influence the agent’s decision from the transcript files. In reality, though,

it may be the case that the most important information is in fact the relative

performance of the individual when compared to his peers. Unfortunately, such
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measures of relative performance are not available in the data, and both the GPA

and the signal proposed before revealed to be very little correlated with observed

wages (which is the main brick of the value functions, and hence, decisions). Not

surprisingly, the signal equations did not show a significant importance of specific

abilities in the determination of the signal, and the consequence was that the true

importance of learning and the informational structure on the exercises is probably

underestimated. Moreover, because the laws of motion impose the information

set is increased only by the signal and the cost shocks at every period, the cost

shocks acquire a disproportional importance in determining the agents’ choices,

as the signal used in the exercise is not very informative. The use of datasets

with detailed information about the individual performance in college would be an

important advance regarding this research.

Fourth, the model contains a very rigid structure that may not conform to

the true relations between the dependent and explanatory variables in reality.

In particular, risk neutrality simplifies a lot the calculations, by allowing us not

to model the credit markets explicitly. Even accepting risk-neutrality, nothing in

reality or in economic theory imposes that wages, costs and signals must be linearly

related to the covariates. The choice of a subsample of white males to construct

the main exercise presented in this section helps to minimize this problem because

it homogenizes the sample, but again, some caution should be taken when looking

at its results.

In spite of all these limitations, the estimation and simulation will show two

things: first, that the method works and could be used for classes of problems

similar to this. Second, these weaknesses point out where additional effort should

be spent in order to improve on this research.
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The learning process and the informational structure

The standard MCMC graphs with the draws made from the ergodic distribution

of the chain can be seen in the appendix E.

In the model, it is assumed the key ingredient of the learning process is the

arrival of new signals, Gijt, associated to enrollment in college in major j, time t.

Because this subsample is homogeneous in the observable characteristics, the only

element of βgj is the intercept, which together with
¡
ξj , σj , θ

¢
fully characterize the

dependence of Gijt on the state variables
¡
X
g
i , Uit, εit

¢
I will leave the analysis of the human capital accumulation rate, θj , to the

next subsection. The average obtained from the ergodic distribution of the chain,

and the respective 95% interval containing the most frequent realizations for the

remaining parameters were:

Table 1.6: Average parameters of the signal equations

βg ξ
¡
x10−4

¢
σ

Sciences −0.079
(−0.19 : 0.04)

−0.03
(−0.49 : 0.40)

3.00
(2.88 : 3.14)

Non− sciences −0.055
(−0.18 : 0.08)

0.02
(−0.20 : 0.28)

3.18
(2.99 : 3.37)

In this table, and in the Graphs A4-A6, we see that both the intercept and the

combination of parameters ξj =
θjjϕj
σj

have symmetric distributions with averages

close to zero and relatively large dispersion, suggesting that the signal is not influ-

enced by abilities. The variance of this equation, on the other hand, is accurately

measured and with similar magnitude in both majors. The ratio
ϕj
σj
is therefore

small, implying that Λit+1 ≈ θj Λitθj , and if the human capital accumulation

rate is positive (θj >> 1), we should observe the variance of the unknown part of

abilities increasing over time (and at approximately the same rate of the variance
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of the known component).

Turning now to the initial conditions of the decision problem, the averages of

the realizations of Λ0 and Ω0 were:

Λ0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1.06 0.13

(−2.25 : 2.99)
−0.14

(−1.60 : 1.55)

0.13 27.46
(20.47 : 75.32)

−0.55
(−20.83 : 21.95)

−0.14 −0.55 25.93
(20.52 : 94.78)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
9

Ω0 = 10−4 ∗

⎡⎢⎢⎢⎢⎢⎢⎢⎣
5.19

(4.56 : 5.66)
0.004

(−0.24 : 0.17)
−0.0002

(−0.28 : 0.20)

0.004 1.50
(1.37 : 1.65)

−0.0002
(−0.19 : 0.10)

−0.0002 −0.0002 2.12
(1.94 : 2.33)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
It is clear from these matrices that the component of true abilities unknown

to the agents at the end of high school is the dominant term of the total variance

of true abilities, Ui0. The difference lies in the order of 104, which suggests either

that the agents know very little about their abilities at that point in time, or that

the structure of the model does not capture what agents really know at the first

period of their decision problems. In the Graphs A7-A10, we see the distributions

of the elements of these matrices. The first two pictures contain the distribution

of the diagonal elements of these objects, except for the unidentified element λ00.

It is interesting to notice that while the average constitutes a good approximation

of a typical realization of ωjj , the posterior distributions of λjj are very skewed to

the right, with fat tails and the mode floating around 1/4 of the average (which

is still much higher than the respective values of ωjj). Furthermore, while the
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distributions of λ11, λ22 almost coincide, the variances of the known part of initial

abilities display very different symmetrical distributions, being ω11 the one with

lowest mean and dispersion, and ω00 the one with the highest. Turning now to the

off-diagonal elements of these matrices, we see that in both cases the magnitude

is much lower than their diagonal counterparts. This result is important, because

it suggests that a diagonal matrix would approximate reasonably well the shape

of them, simplifying the learning process to the one assumed in the (uncorrelated)

multiarmed-bandit model, for which a much simpler estimation method is available.

The dynamic bias and the distribution of U s
ij0

Together with the matrices Λ0 and Ω0, the initial state Ii0 also contains the un-

observed (from the point of view of the econometrician) signals about specific

abilities, Us
i0 that move over time. At each decision node, agents tend to self-

select themselves into majors that could eventually allow them to supply labor

to the segment of the market where they believe to have comparative advantage.

Therefore, while the ex-ante variable Us
i0 was normally distributed across agents

with mean zero, the ex-post distribution of this variable among the subsample of

college graduates in a specific major may have a very different distribution. On

each iteration of the chain, I computed the average of this distribution to see how

important dynamic bias is, and the results are shown in the Graph A11

These graphs are very informative about the importance of self-selection in the

model. While the distribution of Us
i10, U

s
i20 (signal related to scientific and non-

scientific abilities, respectively) has mean zero in the whole population, its average

among college graduates in sciences and non-sciences is approximately US$420.00,

and US$ 2,400.00, respectively. To have an idea of the importance of this effect,
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notice that the first yearly income among science graduates is around US$ 8,645,

and among non-sciences, US$ 9,528. This means that 5% of the sciences income

comes from individual advantages in this field, and impressive 25% of the starting

earnings of non-science graduates come from comparative advantages in this area.

Labor earnings

The wage equations proposed in this article are linear, and with specific coefficients

associated to each different segment of the labor market. The table below shows

the average realization of the parameters that characterize this equation from the

ergodic MCMC (units are US$ 10,000 of yearly earnings), which is complemented

by the Graphs A12-A14:

Table 1.7: Average parameters of the wage equations

Career βw A ρ
Unskilled 0.64

(0.63 : 0.66)
0.14

(0.138 : 0.146)
0.33

(0.3212 : 0.3352)
Sciences 0.81

(0.79 : 0.83)
0.22

(0.215 : 0.222)
0.07

(0.066 : 0.075)
Non− sciences 0.73

(0.68 : 0.78)
0.21

(0.207 : 0.223)
0.18

(0.1669 : 0.1914)

First, notice that, as expected, the wages in occupations that do not require

a college degree display lower average level (intercept), and slower evolution over

time (A). If this were not true, it would be necessary a much greater comparative

advantage in one of the specialized fields to justify delaying the beginning of the

professional career in order to get a college diploma, and on the top of that, paying

costs associated to higher education. Furthermore, these parameters are slightly

higher in sciences than in non-sciences occupations, which suggests that the main

attractive of this career is that observable attributes are better rewarded there, in

contrast to the important role played by the perceived specific ability in non-science
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positions, as mentioned in the last part. Regarding to the last parameter, ρ, which

measures the variance of the (non-persistent) shocks unrelated to personal traits

and that affect wages in each period, we observe that the dispersion is much lower

in sciences than in other careers. If we compare the remaining dispersion after con-

trolling forXi, U
s
it with the total dispersion of wages in each segment of the market

(3.40, 0.18 and 1.10, for unskilled, science and non-science, respectively), we see the

same ordering appears in the raw data, and also that the unexplained variation

in the model lies between 9.7% and 38.9% of the total (unconditional) variance

observed in wages.

The decomposition of the different effects of college education on wages confirms

our suspicion that credential effects are relatively more important to explain the

college premium in scientific occupations than in non-scientific occupations. As

the Graphs A15-A16 indicate, 87% of the labor income increase in the scientific

segment is explained by the fact that personal characteristics are rewarded in a

particularly favorable way, while this effect accounts for no more than 37% in the

non-sciences occupations.

Indeed, what really matters to non-science workers is the human capital accu-

mulated in college, which composes 63% of the gain. This explanation becomes

clear once we analyze how classes in different majors impact specific abilities. The

next table and Graphs A17,A18 and B1 show the average realizations of θjk, i.e.,

the impact of experience in major j on abilities of type k (to recover θjk from this

table, one has to divide these numbers by 100 and add 1) :

In fact, it is clear that one year of classes in non-sciences generates an impact

on this type of human capital (83%) much bigger than one year of sciences on

scientific abilities (almost a half of it), which justifies the tremendous importance
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Table 1.8: Average parameters of the human capital accumulation equations

major ∆Ui0 (%) ∆Ui1 (%) ∆Ui2 (%)
Sciences 211.89

(200.28 : 223.30)
41.65

(39.68 : 44.25)
34.89

(22.87 : 42.33)
Non− sciences 97.80

(84.54 : 113.67)
32.21

(8.51 : 55.80)
83.06

(80.7 : 85.6)

of this effect on wages compared to sciences. The numbers also show a very im-

portant impact of college classes on abilities used in unskilled jobs, which should

cause unskilled workers with some college experience to earn much higher wages

than those who went to the labor market right after graduation in high-school.

Alternatively, it possibly suggests that using college diploma acquisition to divide

people across labor market segments may be misguiding, since in fact people with

some college may be competing for specialized occupations with college graduates,

but unfortunately the data do not provide details about this.

Costs

In our estimations, the cost equations were the only ones that included covariates,

namely, the maximum education achieved by one of the parents of the agent.

On the other hand, the variance of the random term of costs, S, is one of the

parameters fixed exogenously, which means that the scale of these parameters not

necessarily correspond to what would appear if we included S in the estimation.

The average values of these parameters is shown below:

Table 1.9: Average parameters of the cost equations

Intercept Parent0s education
Sciences 3.45

(3.15 : 3.75)
−0.50

(−0.59 : −0.40)
Non− sciences 2.96

(2.60 : 3.32)
−0.27

(−0.37 : -0.15)



52

Assuming S = 10 is the correct value for this parameter, these numbers say

that total cost of going to college for children of parents with less than high-school

is US$ 30,000.00. After that, each addition to parental education reduces costs by

US$ 2,700.00 if the agent takes classes in non-scientific majors, and twice as much

if he/ she chooses Sciences. This means that more educated parents generate a

different type of comparative advantage in Sciences to their children, not related

to specific talents, since costs will reduce up to US$ 10,000 among children of

people who went to graduate school. In the context of this exercise this is not

irrelevant, especially when we take into account that the learning mechanism is

not very significant and choices are likely to be very influenced by the composition

of costs. The distributions of these parameters are presented in the Graphs B2-B3.

In fact, if we consider that the option value of going to college is, on average,

around US$ 122,000 in both science and non-science majors, and this cost is basi-

cally the price to keep it open the possibility of eventually graduating in college, we

have that this price may be 25% of the expected payoff for children of parents with

less than high-school, and only 10% if the individual has at least one parent with

post-college education and chose sciences in the first period. The full distribution

of the option values (in period 0) of going to college is displayed in the Graph

B4 , for both sciences and non-sciences, and it shows a similar format for the two

distributions, with sciences in slight advantage.

Policy effects

Turning now to the counterfactual simulations about college decisions under the

no-switching majors rule, we elected four main indicators to analyze. The first

two intend to capture the welfare loss associated to the extra constraint imposed
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on the individual’s maximization problem, both for the average citizen and for

the potential students for who this restriction is binding (which may be seen as

an analogue of the Treatment on the Treated effect found in the literature about

experiments). These measures involve variations in the expected present value

of income evaluated at the optimal choice of the agents. The last two focus on

the variations in the optimal choice itself, and aim to compute variations in the

proportion of high-school graduates that choose to go to college, and the proportion

of college students who effectively graduate in some major.

The table below shows the average impact of the restriction on the welfare of

the members of our sample.

Table 1.10: Average policy effects

Average 5%(−) 5%(+)
Impact on the total population (US$) 5, 149.80 4, 897.41 5, 414.68

Impact on the treated (US$) 9, 337.73 8, 880.09 9, 818.02

and the Graph B5 depicts the distribution of the "Treatment on the Treated":

The average loss on individuals who seriously consider to go to college after

high school are of the same magnitude as the average initial earnings of a college

graduate, which can be considered a significant impact (even though it is about

only 5% of the total value of going to college). In other words, if these numbers

could be generalized to other situations, it would suggest that a country where the

no-switching majors rule is currently adopted could improve the welfare of talented

people in an amount equivalent to one year of labor income, just by removing

this constraint, which in principle does not involve changes in the governmental

educational budget. Of course, this exercise is just a first approximation to these

impacts, but it may be just the lowerbound of the true impacts, if we consider

that most changes of major occur within the broad categories of sciences and non-
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sciences, and are not captured by this simulation. Even if one does not believe in

these numbers, it provides a strong argument in favor of a serious research around

this topic.

The results look even more impressive when we investigate the changes in the

proportion of high-school graduates who decide to go to college. As the Graph

B6 emphasizes, the number of college students decays from 492 (44.85%) to an

average of 388.8 (35.44%), after the prohibition of switching majors. It is true

that some caution should be used here, since we already mentioned that individual

decisions may be disproportionately affected by circumstantial (cost) shocks, since

the signals obtained from the data were not very informative. Good signals would

reinforce the importance of the persistent unobserved abilities in the model, which

could in principle make the solutions to the individual problems less susceptible to

changes in the environment.

Decisions are also reflected in the graduation rates, which likewise seem to be

very affected by the restriction to major switching. In the sample, 396 students got

a degree after four years in college (36.1%), while, on average, only 165.9 people

finished college in the simulations (15.12%).

Enlarged sample

The subsample of white males was a workhorse for this exercise. On one hand,

the pieces of the model had to be made as simple as possible in order to allow

the realization of the empirical part, but nothing in economic theory suggests that

wages, costs and signals have to be linear in the covariates. A set of homogeneous

observations on this dimension helps to minimize the dependence of the conclusions

on the arbitrary structure of the model, but raises a natural question about the
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generality of the respective results, and this subsection aims to fill in this gap by

presenting some results obtained from a sample that also includes non-whites and

women.

Costs and signal The numbers shown on Table 1.11 indicate that the signal is

once again not explained by neither the observed differences across agents, nor by

the sampled unobservables, and the only significant difference from the previous

exercise was an increase in the estimated variance of the equation, σj .

Regarding to costs, we see that the average level for white males is similar to

the numbers found in the previous section (as captured by the sum of the intercept

and the dummy variable of sex), but classes in sciences are much costlier to women

and non-white, who have to pay, on average, 20,7% and 14% (respectively) more

than white males for one period of classes in this field. This is in sharp contrast

with classes in non-sciences, which do not display any significant cost differences

between genders or races. The cost equations also show that the importance of

parents’ education increases in sciences and decreases in non-sciences when we

include women and non-white in the estimation, which may reinforce the effect

of differences in costs across majors on the racial composition of the scientific

labor force, as the average education among non-whites’ parents is significantly

lower than whites’ (especially considering this data comes from 1972 high-school

seniors).

Wages and human capital accumulation Table 1.12 compares the estimations

of the wage equations in the two subsamples mentioned above. The first thing that

immediately calls our attention is the remarkable decrease in the premia associated

to experience in the labor market in all majors, when women and non-white are
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included in the estimation. In particular, the differentials between unskilled and

specialized careers almost disappear, suggesting that college education no longer

leads to a faster income growth over the lifetime.

Analyzing the race and gender differentials, the first interesting fact is that non-

whites appear to have higher wages in scientific careers than whites, which together

with the estimations of the cost equations indicate that the main incentive whites

have to pursue a degree in this field is that it is less costly to them to do so, whereas

the incentive for non-whites is the higher payoffs associated to this choice. Still

about racial differences, we see that this variable is not significant to explain wage

differences in non-sciences, and that whites have a great advantage over non-whites

in unskilled occupations.

In terms of sex, women get occupations that on average pay lower salaries in all

fields. The magnitudes are similar in the two specialized careers, and equivalent

to approximately 25% of the initial earnings in these jobs. However, the gender

differences are lower in college occupations than in high-school jobs.

When we verify how the rate of human capital accumulation changes after en-

larging the sample, the main fact is that the increase in college abilities becomes

bigger, while the increase in the high-school ability becomes smaller. In the un-

skilled sector, this means that having some college experience does not pay off as

much for the average individual as it does for the average white male, which would

potentially represent a greater incentive to complete college among non-whites and

women.

Other parameters and policy effects Table 1.13 shows that no significant changes

appear in the variance matrices of the distributions of Us
i0 and vi0. In both cases,

these objects appear to be reasonably approximated by diagonal matrices, and the
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variances of the known components of ability are on average slightly smaller in

the enlarged sample, in contrast with the variance of the unknown part, which

increases even more in the more heterogeneous set of observations.

Finally, Table 1.14 contains the results of the simulations of the effect of the no-

switching majors rule on the enlarged sample. Interestingly, this table induces to

different conclusions about the consequences of changing the sample composition,

depending on the indicator analyzed. On one hand, the welfare loss associated to

this rule seems to be smaller in the enlarged sample than in the group of white

males, even though the magnitudes of the treatment effects in both cases is sim-

ilar. However, if we focus on the enrollment and dropout rates, we see that the

no-switching restriction has a significantly higher impact among the enlarged sam-

ple than in the previous exercise. These two facts suggest that non-whites and

women are closer to the indifference thresholds that determine the choices of going

to college and major than the white males, and are therefore more sensitive to

perturbations in the environment. If true, this may suggest that policies aiming to

increase the number of non-whites and women in college would be more effective

if the environment was more flexible than otherwise.

1.5 What have we learnt from this research? - final

remarks

This research has two types of contributions. First, it tries to quantify the relative

importance of three different channels through which college education may affect

labor earnings, and to evaluate the impact of a policy commonly found in many

countries of the world, namely, the prohibition that college students switch majors

during their courses. Second, it develops a method to answer these questions,
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which involves estimating a structural dynamic model of choice of major where

individuals learn about their abilities during college, and self-select themselves

into careers where they think they could have comparative advantage based on the

available information. I divide my conclusions into two aspects: what I learned

about how to approach this problem, and what I learned about the answers to the

questions that motivated this research.

In terms of the questions proposed at the beginning of this article, we found

that both human capital accumulation and labor market segmentation are impor-

tant to explain why college graduates earn more than high-school graduates, but

the relative importance of these channels may be very different for different types

of occupations. In our exercise, occupations that require a diploma in a scientific

major reward particularly well the individual productive attributes, being this the

main incentive to choose these careers. On the other hand, majors associated to

non-scientific specialized careers have a high content of human capital accumula-

tion, and this is what especially attracts people to take classes in this area.

Regarding the policy evaluation, we found that forbidding people to switch

majors may cause a welfare loss equivalent to one year of labor earnings in a spe-

cialized job. If we take into account that this constraint could in principle be

removed without major costs to the educational policymakers, it seems unjustifi-

able that some countries keep this policy. Of course, richer models could provide

more accurate answers, and the supporters of this restriction could argue there are

other costs to change the system, but the magnitude of this impact certainly asks

for more effort to be spent on this question.

The limitations of the empirical strategy were also useful to point out where

we should focus our energy in order to improve our results. First, the variable
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constructed to capture the new information that arrives during college revealed to

be non-informative about one’s specific talents, which may be an indication that

this type of information is not decisive to explain the agent’s behavior, or (which

I believe) that individual grades are not suited to be the empirical counterpart of

the signal modeled in Section 2. Indeed, the attempt of using individual grades

(or transformations of it) as the signal suffered from problems of heterogeneous

grading policies across educational institutions and from the lack of measures of

relative performance, such as the rank in the class or the distance between the

grade obtained and the average of the student’s peers. The ideal dataset should

also include specific information about honors in specific classes, since the same

CIP code may be used to denote classes with very different degrees of difficulty,

attenuating the relation between individual specific talents and observed grades.

Moreover, it is still necessary a deeper discussion concerning whether the learning

structure adopted in the theoretical model is realistic or not. On one hand, if more

than one signal arrives per period, the analyst should be able to accommodate

these variables in the model, in order to better describe the individual’s decision

behavior. On the other hand, the whole dynamics of the model is fully determined

by a very particular combination of the distributions of the unobservables, which

should be relaxed.

The implementation of the empirical procedure can also be improved, which

requires the experimentation of new numerical methods to solve the excessive com-

putational burden associated to the multidimensional integration that appears in

the solution of the individual maximization problems, and the experimentation of

other sampling techniques to speed up the convergence of the MCMC.

Overall, I can say the method was successful in providing an integrated proce-
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dure that combines estimation with simulation, and allows us to evaluate a class

of policies where the changes occur in a discrete set of choices and where the whole

population is affected. However, at this stage the answers obtained should still be

seen with reserve, due both to the rigid structure of the underlying model and the

limitations of the data.
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White Males Enlarged sample 
Average 90% interval Average 90% interval 

Signal equation 
Sciences 

Intercept -0.08 -0.19 : 0.04 -0.14 -0.42 : 0.13 
Sex - - 0.03 -0.15 : 0.21 
Race - - 0.04 -0.25 : 0.31 
Ability (x104) -0.03 -0.49 : 0.40 0.00 -0.11 : 0.10 
Variance 3.00 2.88 : 3.14 3.17 3.05 : 3.29 

Non-sciences 
Intercept -0.06 -0.18 : 0.08 -0.32 -0.60 : -0.04 
Sex - - 0.02 -0.17 : 0.20 
Race - - 0.29 -0.00 : 0.58 
Ability (x104) 0.02 -0.20 : 0.28 -0.01 -0.11 : 0.07 
Variance 3.18 2.99 : 3.37 3.42 3.30 : 3.54 

Cost equation 
Sciences 

Intercept 3.45 3.15 : 3.75 3.96 3.59 : 4.28 
Sex - - -0.68 -0.87 : -0.48 
Race - - -0.46 -0.70 : -0.21 
Parent's Education -0.50 -0.59 : -0.40 -0.62 -0.69 : -0.55 

Non-sciences 
Intercept 2.96 2.60 : 3.32 2.29 1.97 : 2.61 
Sex - - 0.05 -0.16 : 0.26 
Race - - -0.23 -0.55 : 0.09 

    Parent's Education -0.27 -0.37 : -0.15   -0.24 -0.31 : -0.18 

 

Table 1.11: Comparison between the parameters obtained from the sample of white
males and from the enlarged sample: signal and cost equations
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Table 1.12: Comparison between the parameters obtained from the sample of
white males and from the enlarged sample: wage and human capital accumulation
equations

                

White Males Enlarged sample 
      Average 90% interval   Average 90% interval 
Wage equation 

Sciences 
Intercept 0.81 0.79 : 0.83 0.911 0.879 : 0.951 
Sex - - 0.276 0.253 : 0.295 
Race - - -0.069 -0.111 : -0.034 
Experience 0.22 0.215 : 0.222 0.044 0.042 : 0.045 
Variance 0.07 0.066 : 0.075 0.071 0.069 : 0.073 

Non-sciences 
Intercept 0.73 0.68 : 0.78 0.863 0.818 : 0.905
Sex - - 0.270 0.239 : 0.299 
Race - - -0.037 -0.084 : 0.013 
Experience 0.21 0.207 : 0.223 0.048 0.046 : 0.051 
Variance 0.18 0.167 : 0.191 0.121 0.117 : 0.126 

High-school 
Intercept 0.64 0.63 : 0.66 0.556 0.536 : 0.576 
Sex - - 0.367 0.352 : 0.382 
Race - - 0.052 0.033 : 0.072 
Experience 0.14 0.138 : 0.146 0.037 0.035 : 0.038 
Variance 0.33 0.321 : 0.335 0.436 0.430 : 0.442 

Law of motion (theta) 
Sciences 

HK to sciences 1.42 1.40 : 1.44 1.540 1.525 : 1.555 
HK to non-sciences 1.35 1.23 : 1.42 1.527 1.423 : 1.625 
HK to high-school 3.21 3.20 : 3.22 2.822 2.686 : 2.960 

Non-sciences 
HK to sciences 1.32 1.09 : 1.56 1.483 1.429 : 1.536 
HK to non-sciences 1.83 1.81 : 1.86 1.834 1.821 : 1.847 

    HK to high-school 1.98 1.84 : 2.14   1.759 1.480 : 2.064 
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Table 1.13: Comparison between the parameters obtained from the sample of white
males and from the enlarged sample: Lambda and Omega

                

White Males Enlarged sample 
      Average 90% interval   Average 90% interval 
Lambda 

(1,2) 0.130 -2.25 : 2.99 0.033 -1.81 : 2.16 
(1,3) -0.140 -1.60 : 1.55 0.073 -0.27 : 1.59 
(2,2) 27.460 20.47 : 75.32 53.859 16.85 : 177.27 
(2,3) -0.550 -20.83 : 21.95 -4.573 -52.52 : 28.03 
(3,3) 25.930 20.52 : 94.78 35.996 12.23 : 93.44 

Omega (x104) 
(1,1) 5.190 4.56 : 5.66 3.941 3.75 : 4.14 
(1,2) 0.004 -0.24 : 0.17 0.002 -0.06 : 0.06 
(1,3) 0.000 -0.28 : 0.20 -0.001 -0.07 : 0.07 
(2,2) 1.500 1.37 : 1.65 0.901 0.85 : 0.95 
(2,3) 0.000 -0.19 : 0.10 0.000 -0.03 : 0.03 

    (3,3) 2.120 1.94 : 2.33   0.959 0.91 : 1.01 

 

Table 1.14: Comparison between the policy effects obtained from the sample of
white males and from the enlarged sample

White Males Enlarged Sample
Average 90% interval Average 90% interval

Treated on the treated 0.93 0.89 : 0.98 0.82 0.79 : 0.84
Average treatment 0.51 0.49 : 0.54 0.47 0.46 : 0.49

∆ Enrollment rate (p.p.) −9.40 −11.21 : −7.57 −14.37 −15.51 : −13.21
∆ Graduation rate (p.p.) −15.78 −11.21 : −7.57 −18.45 −19.52 : −17.40
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Figure A.1: Mechanics of the model - the role of G
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Figure A.2: Mechanics of the model - the role of other elements of the information
set
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Figure A.3: Average standardized test scores, by field
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Figure A.4: MCMC distribution of the intercept of the signal equations
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Figure A.5: MCMC distribution of the ξ’s in the signal equations
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Figure A.6: MCMC distribution of the σ’s in the signal equations
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Figure A.7: MCMC distribution of the diagonal elements of Λ0
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Figure A.8: MCMC distribution of the off-diagonal elements of Λ0
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Figure A.9: MCMC distribution of the diagonal elements of Ω0
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Figure A.10: MCMC distribution of the off-diagonal elements of Ω0
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Figure A.11: MCMC distribution of the average (perceived) specific ability among
college graduates
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Figure A.12: MCMC distribution of the intercept of the wage equations
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Figure A.13: MCMC distribution of the coefficient on labor market experience, in
the wage equations
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Figure A.14: MCMC distribution of the variance (ρ), in the wage equations
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Figure A.15: Wage decomposition among sciences graduates
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Figure A.16: Wage decomposition among non-sciences graduates
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Figure A.17: MCMC distribution of the rate of accumulation of the unskilled
talent, θj0



82

Figure A.18: MCMC distribution of the rate of accumulation of the scientific
talent, θj,sci
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Figure B.1: MCMC accumulation rate of the non-scientific talent, θj,n−sc
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Figure B.2: MCMC distribution of the intercept of the cost equations
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Figure B.3: MCMC distribution of the coefficient on parent’s education, in the
cost equations
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Figure B.4: MCMC distribution of the option value of college education by major,
in period 0
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Figure B.5: MCMC distribution of the average welfare loss associated to the no-
switching majors rule
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Figure B.6: MCMC distribution of the enrollment rate under the no-switching
majors rule
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Figure B.7: MCMC distribution of the graduation rate under the no-switching
majors rule
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Table C.1: List of majors - sciences

Natural Sciences Social Sciences 
Field FOS Field FOS 

agriculture 101,110,113,199 architecture 201-206,160106 
agronomy 102,103,108,109 regional studies 301-313,1111 
husbandry, poultry 104-107 fine arts 1001,1003,1099 
natural resources 114-198 painting 1002 

biology 401,402,404,406, 
412,418-498 music 1004-1006 

zoology 407-410 dramatic arts 1007,1008 
microbiology 403,411,414-417,499 commercial art 1009-1011,170700 

computer science 701-705,799,140200 foreign 
languages 

1101,1106-1115 

engineering, 
general 

901,903,905,919,925, 
999,4904,160140 french 1102 

chemical eng. 906,915,920,922 german 1103 
civi l eng. 904,908,992 spanish 1105 

electrical eng. 909,160108 law 1401 
mechanical eng. 907,910,913,917,921,923 english 1501,1505,1507 
nursing 1203,70399 literature 1502-1504 

public health 2004,2005,1201,1208, 
1214,1215,1222,70401 rethoric 1506 

optometry,  
dentistry,etc. 

1209,1204-1207,1210, 
1213,1216,1218, 
1219,1221,1299 

psychology 822,2001-2003, 
2006-2010 

pharmacy 1211 religion 1510 

physical therapy 1212 philosophy 821,1509 
laboratory tech's 1223-1225 law enforcement 2105,160605 
nutrition 1306 soc. Sci.(general) 2201,2290 
mathematics 1701-1703 anthropology 2202,2203,2211-2213 
physics 1902,1904,1911-1913 economics 2204,111,517 
chemistry 1905,1907-1909 history 2205 

geology  911,912,914,916,918,924,
1913-1999 geography 2206 

political science 2207 
sociology 2208 
criminology 2209 
int. relations 2210 

    urban studies 2214 
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Table C.2: List of majors - non-sciences

Business Education 
Field FOS Field FOS 

business 112,501,513 education (general) 801,806;824-
826,899,1601 

commerce 502,140,100 elementary 802 
finance 503-505,512 secondary 803-807 
marketing 509;604,4903,179900 special 808-819 

administration 506-508,510,511,827,828, 
1202,1307,2102,8270 kindergarten 823 

communication 601 art 831 
journalism 602 music 832 
radio & tv 603 science & math  829,830,833,834;1508 

media 605 specific subjects 
(health,commerce,…)

836-839 

recreation 2103 physical education 835 
home economics 1301-1303 
family relations 1304,1305 
social work 2101,2104,2106,2199 
theology 2301-2304,2371 

  
interdisciplinary 
studies 

4901 

    natural 
sciences 

1901,4902 

 



94

Table C.3: Frequencies of majors by year - sciences

                    

  1972 1973 1974 1975 1976 1977 1978 1979 graduation
agriculture 46 46 41 40 27 26 23 13 35 
agronomy 13 14 18 33 26 25 14 13 17 
husbandry, poultry 74 71 51 47 26 26 13 13 39 
natural resources 67 50 34 28 13 17 14 10 21 
biology 261 233 252 226 120 92 58 51 245 
zoology 19 22 35 30 21 15 11 10 41 
microbiology 22 24 33 37 32 34 25 13 29 
computer science 101 81 65 73 50 54 68 86 31 
engineering, 
general 99 88 58 35 23 47 33 32 54 
chemical eng. 30 27 23 22 23 24 22 16 22 
civi l eng. 115 105 87 78 67 63 58 55 42 
electrical eng. 123 114 94 86 64 63 54 64 45 
mechanical eng. 151 133 124 128 101 82 82 81 68 
nursing 66 75 311 267 193 169 148 158 142 
public health 25 31 41 52 44 34 43 47 35 
optometry, etc. 538 461 281 180 107 95 81 88 78 
pharmacy 77 83 84 67 55 48 13 10 47 
physical therapy 69 65 41 27 26 19 6 10 17 
laboratory tech's 194 157 100 82 55 36 29 30 26 
nutrition 11 12 14 25 19 17 12 10 17 
mathematics 170 111 88 58 26 31 17 18 62 
physics 47 41 35 32 16 8 11 11 26 
chemistry 72 52 60 66 36 37 33 20 70 
geology 49 47 47 55 42 33 35 30 34 
architecture 98 87 76 70 52 38 23 22 39 
regional studies 5 6 19 27 14 7 5 2 21 
fine arts 28 30 25 30 12 16 11 14 40 
painting 115 108 75 64 50 46 31 36 32 
music 150 115 76 76 58 52 45 39 56 
dramatic arts 64 59 52 47 31 31 24 21 35 
commercial art 113 111 92 76 55 48 49 40 24 
foreign languages 32 33 21 21 7 11 5 6 24 
french 32 30 27 21 5 6 5 3 31 
german 6 8 7 7 2 6 3 2 11 
spanish 33 34 21 22 7 7 4 9 20 
law 165 150 72 57 39 37 35 39 13 
English 105 120 135 103 63 61 54 52 128 
literature 13 15 21 31 22 11 12 9 24 
rethoric 18 17 13 14 6 6 5 2 12 
philosophy 20 23 24 20 18 22 14 10 27 
religion 16 15 12 26 13 17 8 5 26 
psychology 309 315 306 260 147 146 110 98 213 
law enforcement 118 116 82 74 49 62 57 45 20 
soc. Sci.(general) 49 49 55 47 14 18 14 10 45 
anthropology 23 34 29 27 22 23 16 15 22 
economics 59 68 87 88 45 44 31 25 91 
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Table C.4: Frequencies of majors by year - non-sciences



APPENDIX D

POSTERIOR DISTRIBUTIONS AND MCMC

SEQUENCES

In this appendix I present the conditional posteriors of each block that constitutes

the MCMC algorithm. Superscript G in the proposal distributions indicate that a

block can be Gibbs sampled.
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which implies proposal = gamma (a, b)

a = 1 + 1/2
NX
i=1

τ iX
t=0

dikt

b =
1

2

NX
i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pτ i
t=0 dikt

³
Git − βg0k X

g
i

´2
+

di01dik0ρ
−2
0

³
M

G(0)
1

³
Gi1 − β

g0
k X

g
i

´´2PT79
t=1 1 (wi0t > 0)+

di02 (1− di01) ρ
−2
0

³PT79
t=2 1 (wi0t > 0)

´
∗³P1

s=0 diksM
G(0,s+1)
2

³
Gis+1 − β

g0
k X

g
i

´´2
+

(1− di02) ρ
−2
0

³PT79
t=3 1

¡
wijt > 0

¢´
∗³P2

s=0 diksM
G(0,s+1)
3

³
Gis+1 − β

g0
k X

g
i

´´2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(iv) ξk :

posterior ∝
NY
i=1

⎛⎝ JY
j=1

τY
t=0

fG (Git|.)dik fbV
³bVit|.´ T79Y

t=τ

fw (wit|.)dik
⎞⎠

proposal = 0.75N
³
ξ
(m−1)
k , sξk

´
+ 0.25N

¡
μξ, vξ

¢
where:

μξ = vξ

NX
i=1

τX
t=0

dikt

Ã
tY

s=0

θdsk

!¡
Us
ik0 + vik0

¢ÃGit − β
g0
k X

g
i

σk

!

vξ =

⎡⎣ NX
i=1

τX
t=0

dikt

Ã
tY

s=0

θdsk

!2 ¡
Us
ik0 + vik0

¢2⎤⎦−1

(v) θk :



98

posterior ∝ 1
¡
0 ≤ θk ≤ θ

¢ NY
i=1

T79Y
t=τ

fw (wit|.)dik
NY
i=1

τ<2Y
t=0

fbV
³bVijt|.´

NY
i=1

JY
j=1

Ã
fbV
³bVij2|.´(1−di02) τY

t=1

fG (Git|.)
!dik

proposal = N
³
θ
(m−1)
k , vθ

´

(vi) βwk :

posterior ∝
NY
i=1

⎛⎝fbV
³bVik2|.´dik2 JY

j=1

τY
t=0

fbV
³bVit|.´1(t<2) T79Y

t=τ

fw (wit|.)dik2
⎞⎠

proposal = N
³
β
w(m−1)
k , vβwk

´

(vii) βgk :

posterior ∝
NY
i=1

⎛⎝ τY
t=0

fbV
³bVikt|.´dik1(t>0) T79Y

t=τ

fw (wit|.)dik
⎞⎠

proposal = N
³
β
g(m−1)
k , vβgk

´

(viii) Ak :

posterior ∝
NY
i=1

⎡⎢⎣ JY
j=1

τY
t=0

fbV
³bVit|.´1(t<2)

⎛⎝fbV
³bVik2|.´ T79Y

t=τ

fw (wit|.)

⎞⎠dik2
⎤⎥⎦

proposal = 0.75N
³
A
(m−1)
k , vA

´
+ 0.25f

p∗
Ak



99

where fp∗Ak
∝

NY
i=1

T79Y
t=τ

fw (wit|.)dik2

(ix) ρk :

posterior ∝
NY
i=1

T79Y
t=τ

fw (wit|.)dik2

proposal = gamma(a, b)

where

a = 1 +
1

2

NX
i=1

dikτ

T79X
t=τ i

1 (wikt > 0)

b =
1

2

NX
i=1

dikτ ∗⎛⎝ T79X
t=τ i

1 (wikt > 0)
³
wikt − βw0k Xw

i −M
u(k)
τ Us

i0 −M
G(k)0
τ

eGτ
i − tAk

´2⎞⎠
(x) βck :

posterior ∝
NY
i=1

⎛⎝fbV
³bVi2|.´dik2 JY

j=1

τY
t=0

fbV
³bVit|.´1(t<2)

⎞⎠
proposal = 0.75N

³
β
c(m−1)
k , vc

´
+ 0.25fp∗

βck

where fp∗βck
∝

NY
i=1

fbV
³bVi2|.´dik2

(xi) Latent variables:



100

fGvi0|Υ,Z ∝ fv (vi0|.)
τY
t=0

fG (Git|.)

fGbVit|Υ,Z ∝ 1

µbVikt > max½0;max
j 6=k

bVijt¾¶ fbV
³bVit|.´

fUs
i0|Υ,Z ∝ fUs (Us

i0|.)
JY

j=1

Ã
τY
t=0

fbV
³bVit|.´ fG (Git|.)

! T79Y
t=τ

fw (wit|.)

fpUs
i0

= N
³
U
s(m−1)
i0 , vUs

´



101

Figure D.1: MCMC - signal, sciences
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Figure D.2: MCMC - signal, non-sciences
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Figure D.3: MCMC - diagonal elements of Λ0
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Figure D.4: MCMC - off-diagonal elements of Λ0
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Figure D.5: MCMC - elements of Ω0



106

Figure D.6: MCMC - elements of Ω0 (cont.)
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Figure D.7: MCMC - intercepts of the wage equations
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Figure D.8: MCMC - coefficients on experience in the wage equations
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Figure D.9: MCMC - variances of the wage equations
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Figure D.10: MCMC - human capital accumulation rates
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Figure D.11: MCMC - human capital accumulation rates (cont.)
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Figure D.12: MCMC - cost equation, sciences
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Figure D.13: MCMC - cost equation, non-sciences



APPENDIX E

SOME ROBUSTNESS CHECKS

In the empirical exercise realized in Section 3 above, we mentioned that the pa-

rameters (S, δ) of the model were exogenously fixed. In the subsample of white

males, we could perform some robustness checks in order to verify if our conclu-

sions would still hold if different values were chosen for them. The results displayed

in the tables below suggest that most of the estimated parameters would not have

their averages changed if we perturbed the original model in order to raise S from

10 to 100, or diminish δ from 0.9 to 0.75. The most sensitive parameters were the

coefficients of the cost equation, especially in the case were S was changed (as ex-

pected). The variance matrices display also some variation, but the diagonals keep

similar values and the off-diagonal elements are still of much smaller magnitude if

compared to the diagonal elements.

Table E.1: Robustness checks of major-specific parameters

                    

Sciences Non-Sciences High-School 
default S=100 δ=0.75 default S=100 δ=0.75 default S=100 δ=0.75 

σ 3.002 3.001 3.005 3.185 3.182 3.177 - - - 
ξ * -0.036 -0.025 -0.030 0.020 0.016 0.002 - - - 
βg -0.079 -0.084 -0.084 -0.055 -0.055 -0.054 - - - 
βw 0.810 0.840 0.875 0.726 0.780 0.834 0.645 0.656 0.655 
A 0.219 0.233 0.238 0.214 0.258 0.263 0.142 0.133 0.133 
ρ 0.070 0.069 0.069 0.178 0.171 0.170 0.328 0.327 0.327 
θj,hs 3.119 3.260 3.212 1.978 2.305 2.295 - - - 
θj,sc 1.417 1.421 1.421 1.322 1.458 1.461 - - - 
θj,ns 1.349 1.679 1.713 1.831 1.811 1.806 - - - 
βc(1) 3.449 11.004 2.816 2.958 11.216 2.790 - - - 
βc(2) -0.502 -1.687 -0.634 -0.266 -1.273 -0.506 - - - 
*(x104) 
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Table E.2: Robustness checks of other parameters

              

Ω (x104) Λ 
default S=100 δ=0.75 default S=100 δ=0.75 

(1,1) 5.189 4.919 4.973 - - - 
(1,2) 0.000 0.000 0.002 0.128 0.206 -0.216 
(1,3) 0.004 0.005 -0.001 -0.145 -0.370 0.465 
(2,2) 1.499 1.447 1.447 27.459 29.926 21.993 
(2,3) 0.000 0.000 -0.001 -0.549 2.314 -1.787 
(3,3) 2.122 2.076 2.088 25.926 33.958 41.282 

 



APPENDIX F

IDENTIFICATION

In this appendix, I provide a formal proof of identification of most parameters of

the model presented in Section 2, the only exceptions being the matrix Ω0 and the

cost coefficients
n
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i , D
t−1
i , dijt = 1

´
V
wjt
X,D = var

¡
wit|Xw

i ,D
t
i

¢
V
Ujt
X,D = var

³
Us2
ijt|Xw

i ,D
t−1
i , dijt = 1

´
V Gt
X,D = var

¡
Git|Xw

i ,D
t
i

¢
CwG
jt,D,X = cov

¡
Git, wijt|D2i , Xi

¢
1.
©
Aj , ρj

ªJ
j=0

If we have two periods of income observations of a given subsample of individ-

uals with observables
¡
Xw
i ,D

t
i

¢
, we can form:

wjt,X,D = βwj X
w
i + U

s
jτ ,X,D +Aj (t− τ i)

wjt+1,X,D = βwj X
w
i + U

s
jτ ,X,D +Aj (t+ 1− τ i)

⇒ Aj = wjt+1,X,D − wjt,X,D

ρ2 =
var

¡
wjt+1 − wjt|Xw

i ,D
t
i

¢
2
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2.
©
ϕj
ªJ
j=1

Suppose I have access to two subsamples of individuals with histories D2∗i =¡
D1∗i , dij2 = 1

¢
and D2∗∗i =

¡
D1∗∗i , dij2 = 1

¢
: D1∗i 6= D1∗∗i . From the motion of

Us
it and the formulae for wijt, Gijt

wj3,X,D = βwj X
w
i + U

s
j3,X,D

= βwj X
w
i +

ξ2jλjj2

1 + ξ2jλjj2

h
Gj3,X,D − βGj X

g
i

i
ϕj

+
θjj

1 + ξ2jλjj2
U
s
j2,X,D

Gj3,X,D = βGj X
g
i + ϕjU

s
j2,X,D

⇒ wj3,X,D −
Gj3,X,D

ϕj
=

Ã
βwj −

βGj
ϕj

!
Xi (A1)

ϕj =
Gj3,X,D∗ −Gj3,X,D∗∗

wj3,X,D∗ − wj3,X,D∗∗

In this case, I not only uniquely identify the set of parameters
©
ϕj
ªJ
j=1
, but also

the combination
µ
βwj −

βGj
ϕj

¶
, since the left hand side of (A1) is observable and I

still can vary the coordinates Xi. The key for identification here (and hereafter)

is that after the beginning of the last period of college, no further decision takes

place, and I can observe two outcomes
¡
Gi3 and wij3

¢
for the same subsample of

individuals with decision history D2i .

4.
©
σj
ªJ
j=1

Now, let’s compute the observed second moments in a subsample of graduates

in major j. From the equations

Gij3 − β
g
jXi

ϕj
= θjjU

s
ij2 + θjjvij2 +

σj
ϕj

εi2

wij3 = βwj Xi + θjjU
s
ij2 +

ξ2jλjj2

1 + ξ2jλjj2

Ã
θjjvij2 +

σj
ϕj

εi2

!
+ ρjηi3
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we find the relation:

σ2j

"
1 +

ξ2jλjj2

1 + ξ2jλjj2

#
= V Gt

X,D − ϕ2j

³
V
wjt
X,D − ρ2j

´
(AV(1))

and from the equation

wij3 −

³
Gij3 − β

g
jXi

´
ϕj

− βwj Xi = −
1

1 + ξ2jλjj2

Ã
σj
ϕj

εi2 + θjjvij2

!
+ ρjηi3

we find

σ2j

Ã
1

1 + ξ2jλjj2

!
= ϕ2j

³
V
wjt
X,D − ρ2j

´
+ V Gt

X,D − 2ϕjC
wG
jt,D,X (AV(2))

which implies (just by adding up AV(1) and AV(2)):

σ2j = V Gt
X,D − ϕjC

wG
jt,D,X

and that σ2j is identified, since we have already identified ϕj . Furthermore,

notice we can identify the combination ξ2jλjj2 (D)
1, for every decision history D.

5. Λ0 and
©
θj
ªJ
j=1

It is immediately to notice λ000 is non-identified, as it does not appear in any

equation of the model.

The next step is to isolate the subsample of individuals who have never changed

majors during college, and compute the covariance between grades in periods 3 and

4, and the covariance between wages and grades in period 3:

1. ξ2jλjj2 =
σ2j

ϕ2j(V
wjt
X,D−ρ2j)+V

Gt
X,D−2ϕjCwG

jt,D,X

− 1
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cov
³
Gij3, Gij2|D3,Xi

´
= cov

⎡⎢⎣ θjjϕj

³
Us
ij2 + vij2

´
,

ϕj

³
Us
ij2 + vij2

´
+ σjεi2

|D2i ,Xi

⎤⎥⎦
cov

¡
Gij3, Gij2|D3,Xi

¢
ϕj

= θjjϕjλjj2 + θjjϕjV
Ujt
X,D

+θjjσjcov
³
Us
ij2, εi2|D2i ,Xi

´

On the other hand:

cov
³
wij3, Gij2|D2, Xi

´
= cov

³
Us
ij3, ϕjUij2 + σjεi2|D2,Xi

´
= cov

⎛⎜⎝ θjjU
s
ij2 +

µ
θjjλjj2ξ

2
j

1+ξ2jλjj2

¶
vij2,

ϕjU
s
ij2 + ϕjvij2 + σjεi2

|D2, Xi

⎞⎟⎠
=

θjjϕjξ
2
jλ
2
jj2

1 + ξ2jλjj2
+ θjjϕjV

Ujt
X,D

+θjjσjcov
³
Us
ij2, εi2|D2,Xi

´

which implies:

θjjλjj2 =

Ã
cov

¡
Gij3, Gij2|D3, Xi

¢
ϕ2j

−
cov

¡
wij3, Gij2|D2, Xi

¢
ϕj

!³
1 + ξ2jλjj2

´

and because we had already identified ξ2jλjj2, we now identify θjjλjj2. How-

ever, we also know that
ξ2jλjj2
θjjλjj2

= θjj

³
ϕj
σj

´2
, or θjj =

ξ2jλjj2
θjjλjj2

³
σj
ϕj

´2
, and therefore

θjj is identified (and so is λjj2)

Now, from the law of motion of Λit, we know that choice dijt = 1 implies the
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elements of Λit to be of the type:

λkmt+1 = θjkθjm

"
λkmt −

ξjλkjtλmjt¡
1 + ξjλjjt

¢#

In the subsample of non-switchers, this means that:

λjj3
¡
dij0 = dij1 = dij2 = 1

¢
= λjj3 (j, j, j)

=
θ4jjλjj0

1 +
³
1 + θ2jj

´
ξjλjj0

⇒ λjj0 (j, j, j) =
λjj3

θ4jj −
³
1 + θ2jj

´
ξjλjj3

therefore λjj0 is identified.

Turning now to the subsample of individuals whose decision history contains a

chage of majors in the last period of college, we have the following relations:
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cov
³
Gik2, Gij3|D2, Xi

´
= cov

⎛⎜⎝ ϕkU
s
ik2 + ϕkvik2 + σkεi2,

θjjϕjU
s
ij2 + θjjϕjvij2

|D2, Xi

⎞⎟⎠
= θjjϕjϕkλjk2 +

θjjϕjcov
³
ϕkU

s
ik2 + σkεi2, U

s
ij2|D2,Xi

´
cov

³
Gik2, wij3|D2, Xi

´
= cov

⎛⎜⎝ ϕkU
s
ik2 + ϕkvik2 + σkεi2,

θjjU
s
ij2 +

³
θjjλjj3ξj
1+ξjλjj2

´
vij2

|D2, Xi

⎞⎟⎠
=

Ã
θjjλjj2ξj
1 + ξjλjj2

!
ϕkλjk2 +

θjjcov
³
ϕkU

s
ik2 + σkεi2, U

s
ij2|D2,Xi

´
=

Ã
θjjλjj2ξj
1 + ξjλjj2

!
ϕkλjk2 +

cov
¡
Gik2, Gij3|D2,Xi

¢
ϕj

−
θjjϕjϕkλjk2

ϕj

λjk2 =
¡
1 + ξjλjj2

¢Ãcov
¡
Gik2, Gij3|D2,Xi

¢
θjjϕkϕj

−
cov

¡
Gik2, wij3|D2,Xi

¢
θjjϕk

!

So far we have identified λjk2 and λjj2 for all possible decision histories. If

we restrict our attention to the subsample of people who have chosen (k, k, j), we

observe

λjk2 (k, k, j) =
θ2kkθ

2
kjλkj0

1 +
¡
1 + θ2kk

¢
ξkλkk0

⇒ θ2kjλkj0 =

£
1 +

¡
1 + θ2kk

¢
ξkλkk0

¤
λjk3 (k, k, k, j)

θ2kk
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which means θ2kjλkj0 is identified. We also know that

λkk3 (k, k, k) =
θ4kkλkk0

1 +
¡
1 + θ2kk

¢
ξkλkk0

λjj3 (k, k, j)

λjj0
= θ4kj

"
1−

¡
1 + θ2kk

¢
ξk

1 +
¡
1 + θ2kk

¢
ξkλkk0

λ2kj0
λjj0

#

θ4kj =
λjj3 (k, k, k, j)

λjj0
+

ξkλkk0
¡
1 + θ2kk

¢
λjj0

λ2jk3 (k, k, j)

λkk3 (k, k, k)

After identifying θ4kj , we can use it to identify λ
2
kj0 :

λ2kj0 =

³
θ4kjλjj0 − λjj3 (k, k, j)

´
θ4kkλkk0

θ4kj
¡
1 + θ2kk

¢
ξkλkk3 (k, k, k)

and because θkj > 0, we also know that sign
¡
λkj0

¢
= sign

¡
λjk3 (k, k, j)

¢
, and

therefore λkj0 is identified (and so is the whole matrix Λ0, except λ000).

The next step is to identify the parameters θjk : j 6= k. Call

R = 1 + ξjλjj0 +
³
1 + θ2kk

´
θ2jkξkλkk0

h
1 + ξjλjj0

³
1− ρ2kj0

´i

In the subsample of students with decision history (j, k, k), we observe

λkk3 (j, k, k) = θ2jkθ
4
kkλkk0

⎡⎣1 + ξjλjj0

³
1− ρ2kj0

´
R

⎤⎦
θ2jk =

λkk3 (j, k, k)
¡
1 + ξjλjj0

¢h
1 + ξjλjj0

³
1− ρ2kj0

´i £
θ4kk − λkk3 (j, k, k)

¡
1 + θ2kk

¢
ξk
¤
λkk0

where the RHS is already identified, and because θjk must be positive, it is also

identified.
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6. βwj and βGj :

In order to disentangle the combination
µ
βwj −

βGj
ϕj

¶
(already identified, to-

gether with ϕj), let’s compute the moments:

E
³
wij3Gik2|D2,Xi

´
=

ϕkθjjξjλjj2

1 + ξjλjj2
λjk2 + βw0j XiGk2,X,D + βG0k Xiwj3,X,D

−βG0k XiX
0
iβ

w
j + θjjE

³
Us
ij2

¡
ϕkU

s
ik2 + σkεi2

¢
|D2,Xi

´
E
³
Gij3Gik2|D2,Xi

´
= ϕjθjjϕkλjk2 + βG0j XiGj3,X,D − βG0k XiX

0
iβ

G
j

+βG0k XiE
³
Gij3|D2,Xi

´
+ϕjθjjE

³
Us
ij2

¡
ϕkU

s
ik2 + σkεi2

¢
|D2,Xi

´

βG0k Xi

Ã
wj3,X,D −

Gj3,X,D

ϕj

!
+

Ã
ϕj − 1
ϕj

!
βG0k XiX

0
iβ

w
j

= cov
³
wij3, Gik2|D2,Xi

´
−

cov
¡
Gij3, Gik2|D2,Xi

¢
ϕj

+
θjjϕkλjk2
1 + ξjλjj2

In this equation, the RHS is observed/ identified. If I take subsamples with

two distinct histories and same Xi, D2, D2∗, call ∆∗ the difference operator be-

tween moments conditional in different histories (i.e. ∆∗F
¡
., D2

¢
= F

¡
., D2

¢
−

F
¡
., D2∗

¢
) and subtract the second equation from the first, I get rid of the squared

term
(ϕj−1)

ϕj
βG0k XiX

0
iβ

w
j :
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βG0k Xi =

Ã
∆∗wj3,X,D −

∆∗Gj3,X,D

ϕj

!−1 ⎡⎢⎢⎢⎢⎣
θjjϕk∆

∗
µ

λjk2(D2)
1+ξjλjj2(D

2)

¶
+∆∗cov

¡
wij3, Gik2|D2,Xi

¢
−ϕ−1j ∆∗cov

¡
Gij3, Gik2|D2,Xi

¢

⎤⎥⎥⎥⎥⎦
This is a linear equation on the unknown vector βG0k . I can identify its value

by varying the coordinates of Xi. The value of βw0j is therefore also identified.¥
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