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Quantity-before-Price Auction:
Evaluating the Performance of the Brazilian
Existing Energy Market

Rodrigo Moita Leonardo Rezende
Insper PUC-Rio and Illinois

WORKING PAPER

Abstract

In this paper we study the outcome of the six first “existing energy”
auctions in Brazil. Under the current regulatory regime, the bulk of
the trade between existing generators and distribution companies is done
through bilateral eight-year contracts, negotiated in auctions organized
by the regulatory agency. These so-called existing energy auctions follow
a specific rule that we call quantity-before-price auction. In this paper we
develop an auction model to study this type of game and take the model
to the data. The structural model enables us to estimate the opportunity
cost of selling energy for each generator, which is the price they expect to
obtain in the free market in the future.

We find that, while auction prices have steadily risen, the opportunity
cost has increased even faster over time, indicating that the generators
anticipate a faster increase in energy prices than what is measured by
auction prices.

Keywords: Auctions, Electricity, Brazil. JEL Codes: D44, 1.94.



1 Introduction

This paper develops a model of the quantity-before-price auction and uses it to
analyze the Brazilian existing energy market. Most of the electricity trade in
Brazil is done through bilateral contracts that are bought at auctions run by
the regulatory agency, that acts as a single buyer on behalf of the distribution
companies (discos). Generators can choose between selling their energy on the
auctions or negotiate it on the so-called ’free market’, composed of large in-
dividual consumers and traders. The price of the free market is therefore the
opportunity cost of the electricity being negotiated in the auction. We develop
an auction model that takes into account the institutional framework of the
Brazilian market, and take this model to data. The structural model enables
us to estimate the opportunity cost of the electricity traded which corresponds
to the unobservable price of the free market. The results show that the oppor-
tunity cost of the water increased steadily across the auctions, indicating that
the market indeed expects high prices in the future.

We find evidence of prices above cost in auctions for contracts starting in
2006, 2007 and 2008, with mark ups reaching up to 66% on the 2006’s auction,
and virtually no evidence of market power on the other auctions. We conjecture
that large amounts of non-contracted capacity on the generators side increased
competition on the first auction, with contracts starting in 2005, driving the
mark up down. Despite the reduction in non-contracted capacity across the
auctions, the decreasing in the quantity demanded on the last auctions had the
effect to once again increase competition among sellers.

The electricity trade happens through medium and long term contracts of
energy supply, traded both at the regulated market — the auctions — and the
free market. The demand in the regulated market consists of the discos’ demand,
since they must purchase all their electricity needs in the auctions, and some
large users. This obligation guarantees that around 75% of the electricity trade
happens in this environment. The sellers are generators and trading companies.
The most common product traded in this market are eight years contracts of
electricity supply, starting on a pre-determined year in the future. Sometimes
shorter term contracts are also negotiated.

The regulatory agency acts as a single buyer of the electricity. The discos
declare to the regulator the amount of energy they need to buy. The regulator
then runs the auction with the generators as suppliers. The goal is to buy
the amount needed by the distributors, but the regulator may decrease the
demand to induce competition in the auction. The total energy bought is pooled
together and allocated to the discos proportional to their declared needs and at
the average price paid to suppliers.

The free market is a bilateral market where agents are free to trade contracts
of energy supply. There are no special rules here, only that the contracts must be
registered with the ISO for balance control, as it is usual in electricity markets.
Generators are free to negotiate their electricity in any of the two markets.

The auction mechanism consists of two stages. In the first one, henceforth
called the quantity phase, bidders privately choose in a descending price auction
the quantity they are willing to supply at the current price. After the aggregate
quantity crosses an unknown (to the bidders) threshold, this phase stops and
the game move to the second phase. On the second phase, henceforth called
price phase, bidders choose in a one shot game the price at which they want to



sell the quantity previously defined on the first phase. We call this auction a
quantity-before-price auction.

Correia, Melo, and da Costal (2006]) provide a discussion of how this choice of
auction design was made. The two-phase arrangement, with a first-price auction
following a English auction, is reminiscent of the rule proposed by |[Klemperer
(1998) to sell US airwave spectrum auctions.

We analyze data from six consecutive auctions, which traded contracts of
eight years supply starting in 2005, 2006, 2007, 2008, 2009 and 2007 (there were
two auctions selling contracts with 2007 as the starting year).

Using the first order condition for optimal bidding in the second phase of
the auction, we derive an expression for the unobserved opportunity cost of the
sellers. Using the bidding data we estimated the distribution of bids conditional
on agents characteristics. We used information about the quantities to calculate
the expected quantities bidders use to calculate the probability of winning. With
these two pieces of information and the first order condition we can compute
the opportunity costs of the generators.

We explore the fact that the auctions are sequential and introduce learning
into the model. The players have some prior uncertainty about how the other
players will bid. This uncertainty is represented by a stochastic term, for which
bidders update their beliefs after seeing the data and learn about its distribution.

The paper is organized as follows . After this introduction the next section
describes the Brazilian electricity market. Section 3 describes the auctions re-
sults and discuss the question of whether the state owned companies bid lower
prices. Section 4 presents a theoretical model of the auction. Section 5 describe
the learning process. Section 6 explains the method we used to estimate the
structural model developed in section 4. Section 6 presents the results from both
reduced form and structural estimation methods. The last section concludes.

2 The Electricity Market in Brazil

This section provides a brief background on the institutional environment which
lead to the reforms that created the existing energy auctions. A more detailed
account can be found in |[Lock| (2005)) and [Dutra and Menezes| (2005).

The reforms in the nineties transformed a system with state owned verti-
cal integrated utilities into a (partially) private owned system with generation,
transmission and distribution independent of each other. An independent reg-
ulatory agency was created, ANEEL (National Agency of Electric Energy), to
give credibility to the regulatory process and attract private capital to the sec-
tor.

The reforms started in 1995 with the first privatizations and continued dur-
ing the late 1990’s and early 2000’s. ANEEL was created in 1996, with the
privatizations already on its way, and it is responsible for the regulation of the
operation and expansion of the three segments: electricity generation transmis-
sion and distribution. A wholesale market for electricity was created in 2000.

One important aspect of the reforms of the 1990’s was the creation of a
market for bilateral contracts between generators and consumers, mainly distri-
bution companies (discos) and large users. The two sides were free to trade long
term contracts of electricity supply. An important distinction of the Brazilian
market to other market arrangements is that competition exists at the contract-



ing level but not at the production level, with the actual production of electricity
being a centralized decision (against the more popular design of competition at
the production level, like California or UK).

An important event was the energy crisis of 2001. An exceptionally dry
rain season in the first months of 2001 left the reservoirs in the Southeast and
West Central regions with critically low levels of water. The water shortage lead
to a mandatory national rationing of electricity consumption, extremely high
spot prices and non clearance of the wholesale market, culminating in litigation
between several generators and distributors and eventually a federal intervention
in the wholesale market.

The crisis of 2001 raised severe criticism about the functioning of market
institutions, and had a significant negative impact on the public opinion’s view
of the reforms of the past decade. The government argued that the crisis was due
to insufficient rain in the summer of 2001, while critics of the reforms charged
that it was a consequence of misdesigned institutions that were not able to
attract enough investment to the sector.

One characteristic of the electricity market is that supply must meet demand
continuously. This requires a tight control on the amount being produced at
any instant in time, which in part explains the high degree of regulation of even
the most pro-competitive electricity markets. Another characteristic is that it
cannot be (economically) stored. Therefore, the installed production capacity
must be enough to produce up to demand at its peak, otherwise the system
collapses.

One of the reasons for the 2001 crisis was the inability of the bilateral con-
tract market to attract investments soon enough for these investments to mature
at the time of the increase in demandﬂ New generators entered the market in
the years that anticipated the crisis (Moita, [2006)), but they effectively started
operation only some years after 2001. As a result, a perception emerged that
the bilateral market was not capable of coordinating the entry of new generators
to keep up with the future demand.

As a result the federal government decided to create a more centralized
mechanism to trade these contracts. The model adopted was a single buyer
model where long term contracts are purchased through an auction from the
producers by the government and sold to distributors.

2.1 The Industry

The Brazilian generation industry is somewhat concentrated. The maximum
generation capacity of the ten largest firms is shown on table[l] They have alto-
gether 67% of total capacity of the Brazilian system, what indicates a high de-
gree of concentration. Among those ten, Chesf, Furnas, Eletronorte and Itaipu
belong to the federal government through the holding Eletrobras Group, which
accounts for 36% of the total capacity.

The high degree of industry concentration led the regulatory agency ANEEL
to adopt an auction model in which the information about the auction that
bidders can access during the auction is minimal. During the first part of the
auction the sellers do not know the aggregate supply or the total demand, as a
way to try to avoid collusion.

nvestments in hydroelectric plants take about five years to start producing.



Table 1: Ten Largest Generating Firms

Firms Gen Capacity Gen Capacity
(MW) (% of total gen)
CHESF 10615 10.9
FURNAS 9656 10.0
ELETRONORTE 8046 8.3
CESP 7455 7.7
CEMIG 6782 7.0
TRACTEBEL 6515 6.7
ITATPU 6300 6.5
COPEL 4545 4.7
AES TIETE 2651 2.7
DUKE 2299 2.4
ELETROBRAS GROUP 34617 35.7
TOTAL 10 LARGEST 64864 66.9
TOTAL GEN CAPACITY 96971 100.0

The generation capacity of the plants, as shown in table[l] is not the maxi-
mum amount a firm can sell in the auction. First, hydropower plant generators
can only contract up to what is called their ’assured energy’. It is a percent-
age of the plant’s total capacity and it is defined as the amount that can be
supplied over the next years with a 5% percent maximum chance of not having
enough water to deliver it. It depends on the distribution of rainfall in the
specific location the plant is located, among other things. The second reason is
that generators may have part of their capacity already contracted before the
auction.

3 Owutcomes of the auctions

Figure[I| shows the results of the auctions for eight years contracts of electricity
supply starting in 2005, 2006, 2007, 2008 and 2009. The graph depicts the
supply-demand schedules (R$/MWh) for each of the five auctionsﬂ The supply
schedule of the winning bids shift upward and to the left across the auctions. It
implies in higher prices and smaller quantities for the later auctionsﬂ

The generators can choose between selling in the auction or not. If they do
not sell on the auction, they can negotiate this electricity on the free market
or sell it at the spot price. Therefore, the price from the free market and the
spot price represent the opportunity cost for the electricity traded through the
auctions. Following this reasoning, one can think of the auction prices as an

2Demands are assumed to be inelastic. This is not strictly true; discos are require to submit
inelastic demand schedules to the regulator, but the regulator may withhold demand if prices
are deemed too high.

3The total demand also decreased for each auction. Since the first contracts of electricity
supply signed at the time of the privatization and creation of the electricity market were
expiring in 2004 2005 and 2006, there were a large amount of the electricity to be contracted
in these years, what explains the larger volume of electricity negotiated for the contracts
initiating in 2005 and 2006. Since the contracts overlap, from 2007 on only the expected
increase in demand were negotiated in the auctions for contracts starting on these years.



expectation of these future prices. Figure [2| shows the correlation between the
spot and auction prices. The higher prices for the contracts starting in 2006
represent the expectation for the also higher spot prices of that year.

The spot price is the Lagrange multiplier of the feasibility constraint of the
optimal dispatch problem solved by the operator of the system. It corresponds
to the reported marginal cost of the last generator to be dispatched. While only
a small fraction of the overall load is traded at this price, it is an appropriate
indicator of the scarcity of energy at a specific point in time.

Figure [1] depicts increasing auction prices from 2005 on, as shown by the
movements to the left of the supply schedule, which represents increasing ex-
pected spot prices.

3.1 Did the Public Firms Bid Differently than the Pri-
vate?

This question comes from the anecdotal view that the public firms sell energy
at a lower price (ironically called patriotic prices) in the auctions. In fact, there
is some evidence that they did, at least in the first four auctions, but it also
depends on how one defines public firms.

Since the reforms the sector undergone during the 1990’s were conduced by
the government at the federal level, which is also the responsible for the sector’s
regulation, any dysfunction of the electricity industry, such as price spikes or
black-outs, is blamed on the federal government. The political cost of obtaining
high electricity prices on the auctions could explain a more aggressive bidding
strategy by the state owned companies. Hence, one would expect the public
companies owned by the federal government to have a political motive to bid
lower than the rest.

Table [2]shows the results of OLS regressions of the price bids on some covari-
ates. The important variables to answer the question above are pub. enterpr.
and fed. enterpr., with the former being a dummy variable for any firm that has
either federal or state governments as the owner of the majority of the shares
and the latter being a dummy for those companies that have the federal govern-
ment as the owner of at least 50% of the firm’s shares. The results show that if
we define state enterprises as the ones owned by any level of government (state
or federal) there is no statistical differences between public and private. The
coefficients are not negative in any case, and in fact it is positive and significant
(at 15% level) if we look at the results of all auctions in our sample, as show in
column 5 of the Table 2

However, when we consider only the federally owned companies the results
change. If we look at the result of whole sample on column 3, we have a not
statistically different than zero coefficient. But if we consider only the first three
(column 2) or four auctions (column 6) we have a significant negative coefficient
for the fed enterpr variable.

The results, however, are not conclusive. What we know is that Chesf,
Furnas and Eletronorte bid lower prices in the first auctions, but abandon this
strategy on the more recent ones. More information is needed to know if it was
a case of 'patriotic prices’, with the firms bidding low to lower the market price
for final consumers for political reasons, and running out of available capacity
to be able to manipulate the price in the subsequent auctions; or if it is a
case of winner’s curse, with an excessively aggressive bidding strategy by the



Table 2: OLS Price Regressions

FIRST 3 AUCTIONS ALL AUCTIONS FIRST 4 AUCTIONS
federal co.  public co  federal co. public co. federal co.
constant 57.18 56.83 57.34 55.98 57.19
(41.66) (36.22) (20.54) (19.74) (45.35)
quantity 0.00 0.00 0.00 0.00 0.00
(1.52) (0.02) (0.09) (-0.23) (1.21)
state enterpr. 1.31 3.36
(0.85) (1.65)
fed. enterpr. -3.55 0.43 -2.01
(-1.99) (0.17) (-1.50)
D2006 9.26 8.83 7.96 7.56 9.15
(5.91) (5.29) (2.61) (2.53) (6.36)
D2007 18.47 16.91 26.71 25.79 17.96
(9.67) (8.70) (7.50) (7.62) (10.40)
D2008 25.19 25.07 25.94
(7.00) (7.30) (15.93)
D2009 37.10 36.31

(10.27) (10.41)

Numbers in parentheses are t ratios.

firms at the beginning followed by regret and more conservative bidding in the
subsequent auctions.

One interesting feature is that prices are not correlated with quantity. We
use this result as a simplifying assumption when formulating the structural
bidding model. The increase in the year effects can be understood by looking at
Figure (1] It is due to the upward shift in the supply schedule of the generators
that happened toward the more recent auctions.

4 The Quantity-before-Price Auction

In this section, we develop a theoretical model for the auction game used in the
existing energy market. This institution has also been describe and investigated
in |[Dutra and Menezes| (2005). Here, the focus will be to derive from the theo-
retical model a method that will make it possible to draw empirical inferences
about competition and implicit generator costs, as it will be seen below.

We consider a game where N suppliers (generators) compete to provide a
homogeneous, divisible good to a single buyer. Generator ¢ has a technology
represented by a “supply function” S;(p) = mc; Y(p), where mec; is i marginal
cost curve. The buyer seeks to procure a fixed amount QQ* of the good.

Most of the time we will specialize to the case where each supplier has
an inverted L-shaped cost structure, with a fixed capacity ¢; and a constant
marginal cost ¢; for any quantity supplied up to g;. We abuse terminology and
call this situation “constant marginal costs”.

For simplicity, we will assume that bidders make their decision maximizing
profits in each auction in isolation. In reality, since contracts from separate
auctions traded in the Brazilian existing energy market overlap and the the



auctions sometimes occur simultaneously, different auctions are strategically
interrelated; see |Dutra and Menezes| (2005)).

The auction runs in two phases, the quantity phase and the price phase. The
quantity phase is a descending uniform price auction. Specifically, the auctioneer
starts by announcing an initial high price, a quantity threshold @ > Q* and
a price decrement A. Bidders submit quantity bids. (A bid ¢; at price p is a
promise to deliver ¢; at a price of at most p.) If the sum of the submitted bids
is less than @, this phase ends; otherwise, the posted price is decreased by A,
and quantity bidding continues.

The price phase is a one-shot discriminatory price auction. Each bidder is
required to post a single price bid to supply the quantity offered in the second-
to-last round of the quantity phase. The current price in the second-to-last
round is the reserve price in the price phase (thus, the quantity bids in the first
phase are firm obligations). The winners are the generators that post the lowest
prices, up to the point where the initial demand is satisfied. Ties are broken
randomly.

Finally, we assume that bidders learn through the auctions. Given an initial
level of uncertainty on the first auction, players learn how to form expectations
about the other bidders’ price bid. This is equivalent to assume that the bidders
in our sample are bayesians, and after seeing the data use Baye’s rule to update
their beliefs about the opponents’ bids in the next auction. This assumption is
motivated by the fact that we are observing a market in its infant periods, with
substantial initial uncertainty about the competitive environment.

4.1 Competitive Behavior

We say a generator behaves competitively if it does not purposefully restricts its
supply in order to keep prices high; in the context of this auction, by competitive
behavior we mean the following: suppose in a given stage of the quantity phase
of the auction the quantity previously submitted by bidder i is ¢{ and the next
price is pi. If the bidder is competitive, then the quantity submitted this phase
is ¢; = min{S;(p1),q}'}-

We note that this definition does not imply that firms have zero profits, even
in the case where marginal costs are constant, since the most efficient firms
will obtain positive profits bidding competitively. This definition also does not
restrict behavior in the second phase; even when marginal costs are constant,
a firm will find in its own interest to bid above cost in the price phase, and we
still call it “competitive” if it does so.

Uncompetitive behavior decreases not only the revenue but also the effi-
ciency of the market, as uncompetitive bidders withhold generation capacity on
purpose to game the market design.

Lemma 4.1 Suppose Q = Q*, marginal costs are constant and all bidders act
competitively in the quantity phase of the auction. Let p* be the maximal price
in the price stage and A the price decrement used in the quantity phase. Then
all bids in the price phase are in the interval [p* — A, p*].

Proof: Since the quantity phase ended when the price dropped from p* to
p* — A, we know that Zj Si(p*—A)<Q=Q".



Since bidding below cost yields negative profits, any bidder knows that the
probability of winning with a bid of p* — A is one. Thus the optimal bid cannot
be less than that. O

Using the contrapositive of this result, we obtain a simple test for competi-
tiveness: if Q* = @ and marginal costs are constant, then bidding below p* — A
like observed in the data is evidence of uncompetitive behavior, and therefore
of inefficiency.

If Q > Q*, as in the data, an additional step must be made to carry out
this idea. If the (expected) aggregate supply function varies abruptly between
Q* and Q, then equilibrium prices can be arbitrarily low. If we know that the
aggregate supply function does not vary much, then a lower bound for the prices
can be found, based on the outcome of the quantity phase.

4.2 The price phase

Let us focus on the optimal behavior of a generator in the price phase, condi-
tional on the outcome of the quantity phase. In this section we do not assume
competitive behavior by anyone. We do assume that this bidder has constant
marginal costs. Let ¢; and g; be the marginal cost and capacity of this generator.

Let p* and g; be the maximum price and quantity that generator 7 can obtain
in a given price phase subgame (¢ is the minimum of §; and the second-to-last
quantity bid from 3).

Let H(p;) be the probability of ¢ winning, if ¢ bids piﬁ Because marginal
costs are constant, the expected profits of selling 1 MWh with probability 1/2
and 1/2 MWh with probability 1 are the same, and thus we can write that ¢
maximizes

max q; (pz‘ - Ci)H(pi)
pi<p*

If H is differentiable and i elects to bid less than p*, the chosen p; satisfies

the FOC, thus
ci =pi+H(pi)/H'(pi)

If 4 bids p* and we are still willing to assume that H is differentiable at that
point, we obtain ¢; > p* + H(p*)/H'(p*). More realistically, since an atom is
expected at p*, let p* — e be the highest available bid below p*. The cost of a
bidder that bids p* must satisfy (p* — ¢;)H(p*) > (p* — € — ¢;)H(p* — €), thus

eH(p—¢)
H(p—e)—H(p)

Once an estimate for H is found, either an estimate or a lower bound of
¢; can be calculated using these formulas. From these estimates, and using the
assumption of constant marginal costs, we can obtain estimates of the generators
profits as well.

Observe that even though this is a multiunit auction, in the price phase
subgame the quantity sold by each bidder is set. As such, the determination of
equilibrium prices is similar to the case of single item auctions. We thus can fol-
low an approach similar to|Guerre, Perrigne, and Vuong] (2000) to infer marginal
costs from observable prices and estimates of price densities and distributions.
Here, we need to estimate H and H' from the data.

Ci 2 Pi —

4H also depends on the #’s information about its opponents.



5 Learning

We assume that bidders learn about how to form expectations about the other
player’s behavior. On each auction, they update their beliefs about how the
other players will bid in the next auction. We incorporate it in our model in
the following way.

First, bidders form expectations about what the other bidders will play based
on observable characteristics of each bidder and on a random component. This
random term aims to capture the uncertainty of a player about the rivals bidding
strategies in a given auction.

Second, bidders use Baye’s rule to update their beliefs about their uncer-
tainty about the rival’s bids. More specifically, in an auction, after seeing the
data, they update the distribution of the random term which will be used to
forecast the opponents’ bids in the next auction.

P(pt|6:).P(0r)
P(pt)

Two things are of interest here. First, we want to introduce further uncer-
tainty on the initial auctions. This is based on the larger dispersion of price
bids on the first auctions. If on the other hand we assumed that the auctions
were identical, we would be estimating much larger mark ups for these initial
auctions, while the annedotical evidence about them points in the opposite di-
rection. Second, we want to quantify the how the market uncertainty evolved
and to check if beliefs converged at some point.

P(6t41lpe) =

6 Estimation of the Model

6.1 Benchmark: Estimating H with homogeneous bidders

While in principle H could be estimated non-parametrically, due to small sam-
ple sizes we seek a parametric formulation that is convenient to work with (in
particular, it is desirable that the derivative of H exists and is well behaved).

In this section, we assume for simplicity that each bidder knows the g;’s
of all players right before the price phase starts. Since the c;’s are not public
information, the p;’s of the other players are uncertain.

We also make the assumption that p; is independent of qu| While this is a
strong assumption, it is partially justified by the empirical finding that prices
are uncorrelated with quantities in the data (see table [2[ above).

Let us assume that 7 believes its rivals will bid in a way that p; is censored
normal, with mean j, variance o and censoring threshold p*. p and o2 can be
estimated directly from price data alone for each auction.

Consider now the problem of a small generator (with ¢; that is negligible
compared to the overall size of the market). If this generator places a bid ¢

5Note that this is not a consequence of independence in the cost structure — ie., between
¢;j and g5 —, since both p; and g¢; is determined by the realization of c;.
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(< p*), then the probability of winning is

H(t) = Pr() ¢<Q)

Jip; <t

= Pr(}_ 2 < Q)
i

where z; is a indicator of whether p; < t. Observe that z; is independent of
g;j and is ii.d. Bernoulli, with Pr(z; = 1) = ®((t — u)?/0?), where ® is the
standard normal distribution.

> ;% 1s a weighted version of a binomial random variable. Let J be all
subsets of indices {1,..., N} such that J € J iff }°.c;¢; < Q" (in words,

quantities with index in J sum up to less than Q*). Then,
Ht) = Pr(d_zq <QY)
J
= Y (-,

JeJg

where ® = ®((t — u)?/0?).

If N is large, it might not be computationally straightforward to work with
J. For example, the problem of maximizing a function over 7 is the Knapsack
Problem, a well-known example of a NP-hard problem in computer science. For
N small, H can be computed by brute force; in this application we have N = 19@

6.2 Estimating H with heterogeneous bidders

In this section we drop the assumption that bidders are identical. A quick look
at table[I]reveals that homogeneous players is not a plausible assumption in this
market. In order to incorporate bidder heterogeneity into the model we keep
the assumption that prices are normal distributed but now this distribution de-
pends on observable characteristics of the bidders. To keep things simple we as-
sume characteristics linearly affect the bids distribution mean; p; ~ N (X8, a?).
With these assumptions, the problem of estimating the conditional distribution
of bids reduces to estimating a standard OLS regression.
The probability of player j bidding p; greater than all other bids is,

Pr(p; > pi) = H ®,(p;)
i
Again, J is the set of all subsets of indices {1,..., N} such that J € J iff

> jerdi < Q*. But now each bidder has a distinct distribution, that is common
knowledge to all players. Hence, the probability of bidder j selling when bidding

p; is

H(p;) = > _[[]®iwy) [T~ 2i0))]

JeJ ied i€Je

6 It takes about 20 minutes to estimate H for one auction using Matlab 7.5.
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6.3 Estimating H: the long list case - heterogeneous bid-
ders, non-observable losing bids and learning

In this section we propose a method that is applicable if the losing bids are not
observable. This assumption is in accordance to the data used in the empirical
application, and it has two important implications. First, the observed bids
distribution is censored. And second, we do not observe the first phase quantities
of the losing bids, an information we need to calculate the winning probability.
We take the censoring of bids into account by estimating a censored bid
distribution, using a censored regression technique. We estimate a Tobit model
where the censoring threshold is the highest winning bid p. Our model takes
the following form:
pﬁ-K :Xi6+5i7 =3 NN(O,l)

1
pi = min{p;, b}
Players forecast player’s j bid by using the predicted value from the cen-

sored regression plus the stochastic term that represents the uncertainty about
bidders’ strategies:

pj=X;8+6;, 6~ N(uj,o07)

Bidders learn about the stochastic term as they observe the auctions out-
comes. To implement this idea in a parsimonious way, we assume that before
the realization of auction ¢ player ¢ have a (conjugated) normal prior given by
N (uio,afo). Note that each bidder may have a distinct prior. Since we are
assuming the price distribution is also normal, the bayesian update of the dis-
tribution of the stochastic term has a closed form solution. The mean of the
posterior distribution is given by

pit+1 = AMiio + (1 = X).E(&y),

where L
2
_ 950
A= 1 n
01'20 U?t
And the variance is )
n
2 _ -1
Uit+1 - ( 2 + 2 ) .
00 Oit

The posterior distribution resulting from observing the data of a given auc-
tion will be the prior distribution of the next auction.

The quantities are used by the bidders to compute the probability of win-
ning by inferring how much the other players sell at a given bid. Before, we
made the simplifying assumption that the quantities defined in the first phase
of the auction were public information and players used them together with the
probability distribution of bids to calculate their chance of selling the goods.
Unfortunately, this is not the case. The other players’ quantities sold in the
first phase are not observed by the bidders until the auction is over, when the
winning bids become public.

In order to overcome this problem, we assume that bidders form expectations
about the other bidders quantity bids by running an OLS regression of quantities

12



on bidder characteristics, namely the remaining capacity available for sale, and
if the bidder is a federal enterprise. To be more specific, for each auction we
run a stacked OLS regression where the dependent variable is the quantity bid
on that and all past auctions, and the explanatory variables are the capacity
bidders had available for sale in each auction up to that time and if they are
a federal enterprise. We also included dummies for the different auctions. We
use the estimated coefficients and the values of the characteristics to find the
predicted values, which we use as the expected quantities bidders will bid in the
auction. This information is assumed to be common knowledge to all bidders.

Summarizing, we estimate the distribution of price bids by using a Tobit
model due to the censoring problem of the losing bids. We assume that bidders
and an random term to the predicted price (form the Tobit model), and that
players use baysian update to learn about the stochastic term. We take into
account the fact that bidders do not observe the quantities of the other bidders
by assuming that bidders run OLS regressions of quantities on bidders charac-
teristics and use the predicted values as the expected quantities bidders will bid
in the auction. With the expected quantities and distribution of bids in hand,
we calculated the probability of winning the auction with bid p, H(p). We use
the expected quantities to compute all possible elements of 7. Each element in
this set is a subset of bidders such that the sum of their quantities is less than

Q.

6.4 Can we estimate ¢7

Another question of practical interest is how inefficient is the outcome of the
auction (meaning, by how much generators understate their capacities). From
our previous discussion about competitive behavior, we have found ways to
identify that inefficiencies exist; also, because the quantity-before-price auction
is not a Vickrey auction, we do not expect from theoretical grounds its outcome
to be fully efficient. It would be desirable to obtain a quantitative assessment
of this inefficiency.

One could imagine that, just as costs could be backed out from prices in the
pricing phase, capacities could be backed out from quantities in the quantity
phase. This is incorrect.

Lemma 6.1 Consider an instance of the quantity-before-price auction (i.e.,
specific values for costs and capacities for each generator) and an equilibrium
outcome of this game. Take a generator ¢ and let a be the highest proposed
quantity by this bidder. For any capacity level q; > a, the same outcome is an
equilibrium of the game where i has this capacity.

Proof: g; does not affect i’s profits, except as an upper bound on ¢;. [J

The model does not provide any information on the capacity levels g;, beyond
the trivial one that they must be above all capacity bids. If one is willing to
rely strongly on the assumption that marginal costs are constant up to capacity,
this is enough to obtain bounds for the amount of inefficiency in the auction.
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7 Data and Estimation Results

Our goal is to estimate the marginal costs of the bids. We use data from the
sales of electricity in the first six auctions held by the market regulator. We can
only observe the winning bids, both prices and quantities, and the identity and
capacity of the bidders.

We used the generation capacity of the bidders in two ways. First, we
assumed the total generation capacity differentiate the bidders according to
size: a large capacity means a large bidder and so on. Second, we use the
capacity to calculate the amount generators had to sell in each auction. Since
the contracts overlap, the energy sold in the first auction can not be sold in the
second or any of the following auctions. So, the amount a generator has to sell
in auction T is given by his total generation capacity minus the amount sold in
the prior auctions:

;

qr = qo — Gt (1)
t

Il
<

A consequence is that the amount of electricity available for sale decreased across
the auctions. And since contracts overlap, so does the total demand.

We are making the assumption that generators had zero energy contracted
before the first auction. This was the time when the contracts signed at the
time of the reforms of the 1990’s were ending, so the anecdote among industry
participants was that generators were 'uncovered’ by contracts. While it is very
likely that they were not completely uncovered, we do not have data about such
contracts.

We assume the total demand of the auction Q* to be equal to the total
amount sold in the auction. According to the rules of the auction, the auctioneer
had some discretion over the total demand within the auction to increase the
competition in case it needed to. So, the total amount sold and Q* need not to
be the same. Since we do not know Q*, we assume that it is equal to the total
amount sold.

7.1 Auxiliary Regressions and Preliminary Results

Table [3| shows the results for the estimation of the censored price distributions.
These regressions are used to compute the conditional price distributions that
are used as an input in the structural model, but they also bring some in-
sights about the auction results. We regressed prices on the capacity plants had
available on the specific auction, as defined in equation [I} and a dummy that
indicates if the firm is a federal enterprise. The censoring price p* is the closing
price of the quantity phase (that is, the maximum price in the price phase).

In the first three auctions firms with both large capacity and the federal
enterprises bid more aggressively. It seems to be true in the first three auctions
but not on the others[]]

Table [4] shows the results of similar regressions, but in this case we used the
percentage (instead of level) of non contracted capacity.

Tables [5] and [6] show the results when we estimate a Tobit model using the
data from all auctions together. In this case we included dummy variables for the

TWe normalized the data for all auctions. For each price i on auction ¢ the normalization

was 7(p§ 7p$naz)'
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Table 3: Price Distribution - Tobit regressions: total of non-contracted capacity

auction 1 (2005-8)

auction 2 (2006-8)

pl Coef. | Std. Err.

Q1 -0.001 0.001

fed enterpr. | -2.405 4.664

¢ 1.616 2.196
auction 3 (2007-8)

p3 Coef. | Std. Err.

qs -0.003 0.002

fed enterpr. | -0.889 3.847

¢ 6.056 2.996
auction 5 (2009-8)

pb Coef. | Std. Err.

qs -0.0002 0.001

fed enterpr. | 0.0437 1.849

¢ 0.9661 1.114

p2 Coef. | Std. Err.

G2 -0.001 0.001

fed enterpr. | -1.988 3.225

c 1.755 1.871
auction 4 (2008-8)

p4 Coef. | Std. Err.

qa 0.001 0.001

fed enterpr. | 0.399 2.413

¢ 1.369 1.423
auction 6 (2007-8)

p6 Coef. | Std. Err.

de 0.0001 0.001

fed enterpr. | -1.839 2.746

c 3.294 2.248

Table 4: Price Distribution - Tobit regressions: % of non-contracted capacity

auction 1 (2005-8)

auction 2 (2006-8)

pl Coef. | Std. Err. || p2 Coef. | Std. Err.
% 13.96 | 4.79
fed enterpr. | 4.33 3.40 fed enterpr. | 2.51 2.26
c -1.06 1.91 c 10.97 3.76
auction 3 (2007-8) auction 4 (2008-8)
p3 Coef. | Std. Err. || p4 Coef. | Std. Err.
ds -1.36 5.86 Ga 2.66 2.91
fed enterpr. | 4.69 4.22 fed enterpr. | -0.53 2.24
¢ -3.23 4.99 ¢ -3.67 2.77
auction 5 (2009-8) auction 6 (2007-8)
p5 Coef. | Std. Err. || p6 Coef. | Std. Err.
s 1.00 2.29 To 2.63 3.03
fed enterpr. | 0.19 1.85 fed enterpr. | 1.97 2.40
c -1.39 1.66 c -4.49 2.75
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Table 5: Price Distribution - all auctions

Coef. | Std. Err.
q -0,0009 0,0004
fed. enterpr. | -1,115 1,404
D2 -0,429 1,667
D3 1,266 1,776
D4 2,808 1,855
D5 1,457 1,777
D6 3,488 1,973
¢ 1,643 1,442

Table 6: Price Distribution - all auctions

Coef. | Std. Err.
%q 1.00 2.02
fed. enterpr | -2.40 1.26
D2 0.35 1.73
D3 3.66 1.93
D4 3.39 1.86
D5 3.88 2.02
D6 5.44 2.23
c 1.09 2.39

auctions; D2 is a dummy for the second auction and so on. The omitted category
is the first auction. From the results we can see that the price distribution
shifted upward as we moved to the later auctions. We can also see that the
amount a generator has available to sell ¢ negatively affects the its price. It is
an interesting result since it could be the case that large bidders (large with
respect to the amount of energy one has available to sell, §) could have more
market power than the smaller bidders, and consequently bid a higher price. The
data shows the opposite; this results supports the assumption that large players
were more eager to contract their energy, and therefore offered lower prices.
Also, generators that belong to the federal government bid lower prices than
non federal state companies, although this effect is not statistically significant.

Table [7] shows the results of the OLS regression of quantities on covariates.
These are the regressions we assume bidders use to forecast how much the other
bidders will bid in the auction. One interesting finding is that the capacity
available for sale affects the quantity sold in a nonlinear way.

Table 8| shows the evolution of the quantities the plants had available for sale
in each auction. A quick inspection on the table reveals that the three federal
enterprises, Chesf Eletronorte and Furnas, sold large amounts of energy on the
first three auctions, specially Chesf and Furnas. The consequence is that they
had little to sell on the next auctions. Since these are large firms, it may explain
the fact that large firms bid larger quantities at lower prices.
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Table 7: OLS regression of quantities

model 1 model 2
Coef. Std.Err. Coef. Std. Err.

q -0.13 0.09 0.24 0.05
q° 0.00008 | 0.00002

fed. enterp. | 117.22 128.62 152.38 151.99
D2 94.19 167.23 | -113.44 189.83
D3 -276.61 187.44 | -541.06 210.03
D4 -241.64 | 177.50 | -444.39 202.84
D5 -223.15 180.14 | -375.63 209.24
D6 -354.56 | 231.00 | -550.40 268.30
C 287.47 145.92 249.83 172.46
R2 0.74 0.62

Table 8: Quantities Available for Sale - per seller per auction

Q1 42 q3 44 ds d6
CDSA 415 415 415 415 282 282
CEB 130 130 130 130 118 106
CEEE 454 194 42 42 33 24
CELG G&T 12 12 12 12 12 12
CELPA 282 282 282 282 259 259
CEMIG 3733 | 3733 | 2806 | 2806 | 2701 | 2701
CESP 3916 | 3116 | 1938 | 1918 | 1748 | 1628
CGTEE 270 270 270 270 166 131
CHESF 6254 | 3754 | 2700 | 2562 | 2112 | 2032
COPEL 1953 | 973 605 524 444 199
DUKE 1034 | 820 762 544 478 478
ELETRONORTE | 4164 | 3492 | 3164 | 2614 | 2524 | 2524
EMAE 463 378 345 340 337 334
ENERSUL 20 20 20 20 0 0
ESCELSA 557 470 443 443 443 443
FURNAS 6040 | 2964 | 437 287 287 6
LIGHT 637 257 127 127 115 115
TEC 340 340 340 340 190 0
TRACTEBEL 2766 | 2766 | 2766 | 2756 | 2756 | 2565
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Table 9: Auctions 1, 2 and 3 - price, mark up and cost

auction 1 (2005-8) auction 2 (2006-8) auction 3 (2007-8)

firm price -H/dH c price -H/dH c price -H/dH c

CDSA 0.0 0.48 61.6 0.0 0.49 69.5 0.0 0.12 77.6
CEB 0.0 0.48 61.6 0.0 0.49 69.5 0.0 0.12 77.6
CEEE 57.5 3.54 53.9 | 67.9 1.45 66.4 0.0 0.12 77.6
CELG G&T 0.0 0.48 61.6 0.0 0.49 69.5 0.0 0.12 77.6
CELPA 0.0 0.48 61.6 0.0 0.49 69.5 0.0 0.12 77.6
CEMIG 0.0 0.48 61.6 | 69.6 0.62 69.0 0.0 0.12 77.6
CESP 62.1 0.48 61.6 | 68.4 1.20 67.2 | 777 0.12 77.6
CGTEE 0.0 0.48 61.6 0.0 0.49 69.5 0.0 0.12 77.6
CHESF 52.8 11.97  40.8 | 60.4 17.66  42.7 | 66.1 9.96 56.1
COPEL GER 57.5 3.51 54.0 | 67.6 1.59 66.0 | 75.4 1.39 74.0
DUKE 60.0 1.53 58.4 | 70.0 0.49 69.5 | 76.0 1.08 74.9
ELETRONORTE | 56.0 5.26 50.7 | 63.9 5.19 58.7 | 77.0 0.51 76.5
EMAE 60.8 1.04 59.8 | 69.2 0.79 68.4 | 75.8 1.21 74.5
ENERSUL 0.0 0.48 61.6 0.0 0.49 69.5 0.0 0.12 77.6
ESCELSA 57.0 4.04 53.0 | 64.0 5.03 59.0 0.0 0.12 77.6
FURNAS 60.9 0.98 60.0 | 69.6 0.62 69.0 | 77.7 0.12 77.6
LIGHT 51.7 16.40 353 | 61.1 13.21 479 0.0 0.12 77.6
TEC 0.0 0.48 61.6 0.0 0.49 69.5 0.0 0.12 77.6
TRACTEBEL 0.0 0.48 61.6 0.0 0.49 69.5 | 70.9 4.61 66.3
average 4.9 52.8 4.0 62.7 2.7 71.4
mark up (%) 9% 6% 1%

*This is the ratio of the average mark up and the average marginal cost of the winning bids only.

7.2 Structural Estimates

Tables 0] and [10] show the estimates of the structural model. For each auction,
the price, the mark up (—H/dH) and the marginal cost are shown. A zero on
the price column means that it is a losing bid. For these cases, the marginal
cost shown represents a lower bound for the true marginal cost.

We assume the prior distribution to be N(0,100). Table [11]shows the evo-
lution of the mean and the variance across the auctions. Note that both the
means and the variance converge quickly to a distribution that is similar across
the later auctions.

On table [12] we report the results of the model without learning. The results
are similar, with the main difference being a decrease of the mark up of the
lowest bids. In the model without learning, a lower bid implies a significant
lower marginal cost. With uncertainty and learning, a lower bid is credit to a
lower marginal cost but also to higher uncertainty about the other players bid.
This effect is more pronounced on the first three auctions. The estimated bound
for the marginal cost of the losing bids barely change with or without learning.

8 Conclusion
In this paper we study data from the the first six existing energy auctions in

Brazil, using a structural model of equilibrium bidding in the price phase of this
game.
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Table 10: Auctions 4, 5 and 6 - price, mark up and cost

auction 4 (2008-8) auction 5 (2009-8) auction 6 (2007-8)

firm price -H/dH c price -H/dH c price -H/dH C

CDSA 83.5 0.13 83.4 0.0 0.66 95.3 0.0 0.39 104.6
CEB 0.0 0.11 83.4 | 94.5 0.97 93.5 0.0 0.39 104.6
CEEE 0.0 0.11 83.4 | 94.3 1.11 93.2 | 104.5 0.96 103.5
CELG G&T 0.0 0.11 83.4 0.0 0.66 95.3 | 100.0 61.02 39.0
CELPA 83.5 0.11 83.4 0.0 0.66 95.3 0.0 0.39 104.6
CEMIG 83.5 0.11 83.4 0.0 0.66 95.3 0.0 0.39 104.6
CESP 83.5 0.11 83.4 | 934 1.83 91.6 0.0 0.39 104.6
CGTEE 83.5 0.11 83.4 | 91.8 5.16 86.6 0.0 0.39 104.6
CHESF 83.5 0.11 83.4 | 96.0 0.66 95.3 | 105.0 0.39 104.6
COPEL GER 82.3 1.14 81.2 | 96.0 0.49 95.5 0.0 0.39 104.6
DUKE 0.0 0.11 83.4 0.0 0.66 95.3 0.0 0.39 104.6
ELETRONORTE | 83.5 0.14 83.3 0.0 0.66 95.3 | 105.0 0.39 104.6
EMAE 0.0 0.11 83.4 | 96.0 0.66 95.3 0.0 0.39 104.6
ENERSUL 78.5 12.87  65.6 0.0 0.66 95.3 0.0 0.39 104.6
ESCELSA 0.0 0.11 83.4 0.0 0.66 95.3 0.0 0.39 104.6
FURNAS 0.0 0.11 83.4 | 96.0 0.66 95.3 0.0 0.39 104.6
LIGHT 0.0 0.11 83.4 0.0 0.66 95.3 0.0 0.39 104.6
TEC 81.6 1.94 79.6 | 95.0 0.69 94.3 0.0 0.39 104.6
TRACTEBEL 0.0 0.11 83.4 | 93.0 2.34 90.7 0.0 0.39 104.6
average 2.7 79.4 1.8 92.3 20.8 82.4
mark up (%) 3% 1.9% 25.2%

*This is the ratio of the average mark up and the average marginal cost of the winning bids only.

Table 11: Mean and Variance Evolution - prior and posteriors

firm 1 2 3 4 5 6
mean

CDSA 0.00 1.36 1.32 2.42 2.02 | 1.61
CEB 0.00 1.52 1.57 2.89 2.17 | 2.27
CEEE 0.00 5.90 4.57 5.01 3.21 | 3.01
CELG G&T 0.00 1.59 1.68 3.08 | 2.23 | 1.76
CELPA 0.00 1.44 1.44 2.64 | 2.08 | 1.65
CEMIG 0.00 -0.46 | -1.37 | -1.90 | 0.50 | 0.48
CESP 0.00 -0.56 | -0.30 | -0.26 | 1.08 | 1.86
CGTEE 0.00 -0.93 | -0.70 0.92 1.42 | 2.80
CHESF 0.00 4.95 5.10 6.08 | 4.63 | 3.15
COPEL GER 0.00 5.05 3.86 4.67 | 3.76 | 2.71
DUKE 0.00 3.11 1.77 2.92 2.30 | 1.77
ELETRONORTE 0.00 2.94 2.36 0.19 1.71 | 1.27
EMAE 0.00 2.58 2.30 3.79 2.68 | 2.02
ENERSUL 0.00 1.58 1.67 3.07 | 4.72 | 3.34
ESCELSA 0.00 6.30 6.84 6.12 | 3.87 | 2.77
FURNAS 0.00 -2.95 | -3.06 | -0.85 | 0.53 | 0.68
LIGHT 0.00 11.45 | 10.79 | 9.12 5.29 | 3.69
TEC 0.00 1.41 1.39 2.55 3.02 | 2.63
TRACTEBEL 0.00 0.07 -0.76 0.77 1.83 | 2.41
variance 100.00 1.59 0.65 0.44 | 0.22 | 0.14
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Table 12: Mark ups (-H/dH) - without learning

1 2 3 4 5 6
CDSA 0.48 0.49 | 0.12 | 0.13 | 0.75 | 0.40
CEB 0.48 049 | 0.12 | 0.12 | 0.89 | 0.40
CEEE 3.67 144 | 0.12 | 0.12 | 1.00 | 0.97
CELG G&T 0.48 0.49 | 0.12 | 0.12 | 0.75 | 63.01
CELPA 0.48 0.49 | 0.12 | 0.12 | 0.75 | 0.40
CEMIG 0.48 0.62 | 0.12 | 0.12 | 0.75 | 0.40
CESP 0.48 1.19 | 0.12 | 0.12 | 1.55 | 0.40
CGTEE 0.48 049 | 0.12 | 0.12 | 3.79 | 0.40
CHESF 13.49 | 1745 | 9.76 | 0.12 | 0.75 | 0.40
COPEL GER 3.63 1.58 | 1.39 | 1.11 | 0.52 | 0.40
DUKE 1.55 0.49 | 1.08 | 0.12 | 0.75 | 0.40
ELETRONORTE | 5.52 5.13 | 051 | 0.14 | 0.75 | 0.40
EMAE 1.04 0.78 | 1.21 | 0.12 | 0.75 | 0.40
ENERSUL 0.48 0.49 | 0.12 | 12.39 | 0.75 | 0.40
ESCELSA 4.20 497 | 012 | 0.12 | 0.75 | 0.40
FURNAS 0.98 0.62 | 0.12 | 0.12 | 0.75 | 0.40
LIGHT 19.33 | 13.04 | 0.12 | 0.12 | 0.75 | 0.40
TEC 0.48 049 | 012 | 1.88 | 0.64 | 0.40
TRACTEBEL 0.48 0.49 | 456 | 0.12 | 1.92 | 0.40
average 4.9 4.0 2.7 2.6 1.5 21.5
mark up (%) 9% 6% 4% 3% 2% | 26%

We find that in the earlier auctions not only the auction price was lower, but
the markups were generally higher - the last auction is an exception, due to one
very low bid. As in an auction game markups are driven by informational rents,
this pattern may indicate that private information among generators dissipated
in the latter auctions.

In the context of the methodology proposed here, rising auction prices and
diminishing mark-ups lead to the conclusion that marginal costs were rising
even more sharply. This may seem odd if marginal costs are determined by
the technology of the firms. That, however, is not our interpretation. In our
view, the marginal cost for these suppliers reflect their expectations about future
market conditions, more specifically how much they expect to sell in the free
market 1 MWh on average in the 8 years that correspond to contract being
traded.

While data on bilateral contracts in the free market is not available, we can
use the spot price as an approximation. From figure 2] we can see that the spot
price has indeed risen sharply after the auctions. Thus, the rise of estimated
marginal costs can be understood as rational expectations on the part of the
generators.

We assume learning into the model. Bidders use baysean learning to update
their beliefs about uncertainty concerning the other players. Despite assuming
a large variance for the prior, the results do not change substantially from the
model without learning. The only difference comes from the lowest bids: when
we add prior uncertainty into the model the large mark ups reduce by approxi-
mately 15%. We can conclude that without prior uncertainty the higher mark
ups would be overestimated. Part of the reason for lower bids was uncertainty
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about the competitive pressure, and not only market power.

As for the question of whether the federal state companies bid lower prices,
we can not be conclusive. The OLS regressions from table [2] show statistical
evidence that the federal government owned companies bid lower prices in the
first three auctions, but changed their strategy thereafter. A possible explana-
tion is that they contracted most of their energy on the first auctions and had
no non-contracted capacity left on the remaining auctions. However, the results
from the Tobit regressions, where we control for the capacity firms had available
for sale, are not significant even on the first three auctions.

If we look at the results from the structural model we can see that CHESF
had marginal costs much lower than the other firms on the first three auc-
tions. It is possible to draw a similar conclusion, although less dramatic, for
ELETRONORTE, ESCELSA and LIGHT. These last two companies are not
federal state owned companies, so we cannot generalize this result for all federal
companies.

One question of interest is to know if firms with large uncontracted capacity
bid higher or lower prices. If we look at the results from tables[3] or [5] we can see
that the sign of the estimated coefficient (g) changes across the auctions. This
result is consistent with the hypothesis that what matters is the total amount
of non-contracted capacity, and not the capacity of an individual plant. The
structural model capture this feature well since the larger its total capacity
relative to demand, the higher is the probability that a plant does not sell.
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