
 

 

 

 

 

 
Av. Bandeirantes, 3900 - Monte Alegre  - CEP: 14040-900 - Ribeirão Preto-SP 

Fone (16) 3602-4331/Fax (16) 3602-3884 - e-mail: cebelima@usp.br  site:www.fearp.usp.br 

Faculdade de Economia, 

Administração e Contabilidade 
de Ribeirão Preto 

Universidade de São Paulo 

Texto para DiscussãoTexto para DiscussãoTexto para DiscussãoTexto para Discussão    

Série EconomiaSérie EconomiaSérie EconomiaSérie Economia    

TD-E 14 / 2011 

High interest rates: the golden rule 

for bank stability in Diamond-

Dybvig model 

Prof. Ms. Jefferson Donizeti Pereira 

Bertolai 

Av. Bandeirantes, 3900 Av. Bandeirantes, 3900 Av. Bandeirantes, 3900 Av. Bandeirantes, 3900 ---- Monte Alegre  Monte Alegre  Monte Alegre  Monte Alegre ---- CEP: 14040 CEP: 14040 CEP: 14040 CEP: 14040----900 900 900 900 ---- Ri Ri Ri Ribeirão Preto beirão Preto beirão Preto beirão Preto ---- SP SP SP SP    
Fone (16) 3602Fone (16) 3602Fone (16) 3602Fone (16) 3602----4331/Fax (16) 36024331/Fax (16) 36024331/Fax (16) 36024331/Fax (16) 3602----3884 3884 3884 3884 ---- e e e e----mail: cebelima@usp.br site: www.fearp.usp.brmail: cebelima@usp.br site: www.fearp.usp.brmail: cebelima@usp.br site: www.fearp.usp.brmail: cebelima@usp.br site: www.fearp.usp.br    



 

 

 

 

 

 
Av. Bandeirantes, 3900 - Monte Alegre  - CEP: 14040-900 - Ribeirão Preto-SP 

Fone (16) 3602-4331/Fax (16) 3602-3884 - e-mail: cebelima@usp.br  site:www.fearp.usp.br 

Universidade de São Paulo 

Faculdade de Economia, Administração e Contabilidade 

de Ribeirão Preto 

 
 
 
 

Reitor da Universidade de São Paulo 
João Grandino Rodas 
 
Diretor da FEA-RP/USP 
Sigismundo Bialoskorski Neto 
 
 
Chefe do Departamento de Administração 
Marcos Fava Neves 
 
Chefe do Departamento de Contabilidade 
Adriana Maria Procópio de Araújo 
 
Chefe do Departamento de Economia 
Walter Belluzzo Junior 
 
 
 
 
 

 
CONSELHO EDITORIAL 

 
Comissão de Pesquisa da FEA-RP/USP  

 
Faculdade de Economia, Administração e Contabilidade de  Ribeirão Preto 

Avenida dos Bandeirantes,3900 

14049-905  Ribeirão Preto – SP 
 
 

 
 

A série TEXTO PARA DISCUSSÃO tem como objetivo divulgar: i) resultados de 
trabalhos em desenvolvimento na FEA-RP/USP; ii) trabalhos de pesquisadores de 
outras instituições considerados de relevância dadas as linhas de pesquisa da 
instituição. Veja o site da Comissão de Pesquisa em www.cpq.fearp.usp.br. 
Informações: e-mail: cpq@fearp.usp.br 



High interest rates: the golden rule for bank

stability in the Diamond-Dybvig model∗

J. D. P. Bertolai and R. de O. Cavalcanti
FGV/EPGE

November 5, 2011

Abstract

In a companion paper, Bertolai et al. (2011) build on Peck-Shell (2003)
economies and obtain strong implementation in perturbations of optimal
contracts. Since bank runs are eliminated with distortions that become
very small when the population grows, a pressing issue is whether an
alternative specification can generate the costly crisis that are common in
history. We find, in this paper, an affirmative answer in the context of the
Diamond-Dybvig (1983) model, and uncover the role played by societal
weights on future consumption and solvency risk. An extension of the
Ennis-Keister (2009) algorithm shows the impact of run strategies and
implicit rates of interest on the formation of expectations, in line with
some classical views.
Keywords: severe aggregate-uncertainty, mixed-strategy bank runs, insol-
vency, dynamic programming. JEL codes: E4, E5.

1 Introduction

Perhaps less forgiving than modern counterparts, financial arrangements based
on paper credit and fractional reserves, in the era of gold standard, gave to
classical economists Adams Smith and Henry Thornton a special perspective on
what today are called financial regulation and central banking. For Thornton,
an illiquid system can accomplish more — despite the inherent risk of suspen-
sion of convertibility — when the industry seeks long-term payoffs, in contrast
to narrow objectives associated to bank panics, high demand for gold and ex-
tinction of debt. One possible interpretation of Thornton ideas is that society
should commit to policies making future growth attractive to a substantial set
of agents, and that in doing so the potential for panics is minimized. There is,
however, a considerable degree of ambiguity in the modern literature about the
trade-offs involved in the provision of liquidity from a macro perspective. The
purpose of this paper is to make a simple and transparent connection between
bank stability and the social discounting of future utilities using variations of

∗Preliminary and incomplete draft prepared for the Wisconsin School of Business, 3rd
Annual Conference on Money, Banking and Asset Markets, November 2011.
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the Diamond-Dybvig (1983) model. In particular, we discuss which implicit in-
terest rates society should adopt when aggregate uncertainty is severe or when
insolvency becomes a real threat.1

This paper builds on a literature inspired by Diamond and Dybvig (1983)
but focusing on frictions in the diffusion of information that are fundamental.
Wallace (1988) was the first to notice that a social planner should not attempt
to treat impatient consumers equally in a banking model with sequential service
and aggregate uncertainty. For him [see also Wallace (1990)], this basic prop-
erty has deep roots, and should be interpreted as a single-asset explanation of
actual bank suspensions observed in history. Since then, new tools have been
developed, and in this paper we shall advance them to bring to bear constraints
needed to insure truth-telling and uniqueness of equilibrium, two issues not pur-
sued at the time. We find that variations in consumption at the first date of
Wallace’s sequential-service model is best interpreted as part of a movement in
interest rates meant to give future utilities a proper weight and which should
be modified by incentives and stability considerations. We also think that ideas
for bringing insolvency issues into focus, which we also formalize, can increase
our understanding of historic suspensions. We find, for instance, that in general
the planner should not seek equal-treatment of patient consumers either.

Wallace’s paper falls short of characterizing optimal allocations if depositors
of different types — with different liquidity needs — arrive at random times to
the bank. Green and Lin (2000 and 2003) reach much further, including exam-
ples that can be computed in close form. In more general specifications with
independent shocks, reserves need not be distorted in order to provide incentives
for truth telling and, remarkably, there is no need to worry about bank stabil-
ity either: they prove that the optimum is interior and uniquely implemented
in their economies. Peck and Shell (2003) propose a new landscape, however,
showing that runs can become pervasive with new truth-telling constraints re-
sulting from a less informed depositor (see also Andolfatto et al., 2007, for more
on the role of disclosure).

Peck and Shell (2003) and, more recently, Ennis and Keister (2009), manage
to open up several directions for future work, with examples of runs, design
of strong implementation in pure strategies (Peck-Shell) and an algorithm for
optimal reserves (possibly susceptible to runs) for a particular case of correlated
shocks and inactive truth-telling constraints (Ennis-Keister). In Bertolai et al.
(2011), however, the issue of strong implementation becomes very subtle when
the distribution of types is easily predicted. They show that if the population is
not too small and types are independent, then optimal reserves are essentially
invariant to typical changes in truth-telling constraints (differences are particu-
larly small in numerical examples with homothetic preferences).2 This suggests

1In contrast to the proposals of matching maturity of assets and liabilities, by Adams Smith,
or prohibition of fractional reserves, by Milton Friedman [see Wallace (1988) for references],
Henry Thornton ([1802] 1939, chap. 4) warns against reductions in the creation of liquid
liabilities by the central bank for preventing financial crises. An alternative, a policy of
extending liquidity in exchange for good collateral, is largely credited to Walter Bagehot
(1873), whose proposal includes a recommendation for higher “penalty” rates.

2A different but somewhat related subtlety is found by Cavalcanti and Monteiro (2011).
They propose circumventing the revelation principle in order to achieve strong implementa-
tion in Ennis-Keister and Peck-Shell environments through large message-spaces, allowing for
partial withdrawals and two-price mechanisms. Since, to some degree, such mechanisms are
subject to the criticism of being unrealistic, we do not pursue them here.
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that reserve management is more meaningful — eliminating runs is more costly
— if aggregate uncertainty remains substantial even after the intentions of an
initial subset of depositors can be sampled. In this paper, we shall provide
an algorithm for strong implementation generalizing the weak-implementation
method in Ennis and Keister (2009) in other respects: it allows for active truth-
telling constraints in the spirit of Peck and Shell (2003), and for a different
notion of aggregate uncertainty that avoids the limit result in Bertolai et al.
(2011).

Our extension to insolvency risk in the Diamond and Dybvig (1983) model
is also novel. The need to avoid a bank run becomes more appealing when
financial distress can leave a number of depositors without consumption (or
with very low utility). We borrow from Kocherlakota and Wallace (1998), and
Peck and Shell (2010), monitoring assumptions that can lead to insolvency. In
the former, a planner learns about actions in a monetary setting only after a
time lag.3 In the latter, a bank cannot store information provided by those
willing to visit without withdrawing. In our formulation, patient individuals —
with high desire for late consumption — are further divided into two groups: in
one case (type 1), actions are monitored as in the conventional model, and in
the other (type 2), a given individual is able to mimic the actions of a subset
(of size two, in our numerical examples) of impatient depositors. Embezzlement
behavior by a type-2 person at the first period, if it happens to occur in a run
equilibrium, can be detected only in the second period, thus leaving the bank
insolvent. We find that reserve management should direct extra second-period
resources to these potential ‘insiders’ in order to promote bank stability.

Golden rule: less discounting, more savings

Our basic construction, employed throughout the paper, can be explained
in simple terms for the particular case of independent shocks and standard
monitoring (no type-2 people). There are two dates and two types of depositors.
The aggregate state is ω ∈ {0, 1}N , where N is the population size. A null
coordinate i, ωi = 0, means that an individual arriving to the bank in position i
consumes only at the first date (c1) and has utility Au(c1), where A ≥ 1 and u(c)
stands for 1

1−δ c
1−δ with δ > 1. Otherwise, when ωi = 1, ‘person i ’ can enjoy

consumption at both dates (c1 and c2) and her utility is instead u(c1 + c2).
Individuals are ex-ante identical and later experience idiosyncratic shocks to
preferences and to positions. The probability of drawing type 0 is p and, for
any given type realization, the probability of position i is 1

N . As in Peck and
Shell (2003), individuals must announce types without knowing their positions;
the planner — the bank — must transfer a quantity of date-1 consumption to
the person in position i based on history (ω1, ..., ωi) and taking expectations
about ωi+1, ..., ωN (sequential service). For a given i, date-2 consumption is a
function of the whole list ω, and the aggregate date-2 consumption is bounded
above by reserves saved at date 1 and reinvested at (gross) rate of return R > 1.
The bank starts with initial reserves Y . A reserve-management rule should be
designed so as to maximize ex-ante utility.

3See also Calomiris and Khan (1991), and Prescott and Weinberg (2003), as well as other
references on the treatment of imperfect monitoring in monetary theory reviewed by Cavalcanti
(2011).
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Because R > 1, a necessary condition for welfare maximization is that type-1
individuals consume zero at the first date, enabling society to make the best use
of its growth potential. Also, it can be shown that in this simple economy all
type-1 individuals should share the same level of consumption at the second date
(this also holds with binding constraints here but not in our general formulation
of aggregate uncertainty below).

Ennis and Keister (2009) establish that optimal reserves for this homothetic
economy follow from a dynamic-programming solution, exploring the fact that
the marginal benefit of a unit saved to date 2 and shared with any j patient
individuals can be found analytically. Also, the level of date-1 consumption that
should be transferred to an impatient person at position i (defining reserves
saved for position i+ 1) is an explicit fraction

1

1 + fi(ω1, ..., ωi)

of previous savings, where the coefficient fi vary with the number of zeros in
history (ω1, ..., ωi). And, more importantly, Ennis and Keister (2009) show that
these coefficients can be computed recursively.

One problem with the Ennis-Keister calculation is that it may discount fu-
ture utility too much if A is sufficiently high. This is the case when types are
private information, a situation assumed throughout this paper, and when A is
sufficiently high. Increases in A lead to higher marginal utility of date-1 con-
sumption and, if no corrections are made, a patient individual will choose to
misrepresent her type in order to reach a better payoff. We show, in this paper,
that the problem can be corrected as follows. Instead of assuming that the
type-1 utility is u(c1 + c2), the planner can apply the Ennis-Keister algorithm
to an alternative economy where the patient utility function is now βu(c1+ c2),
and where β is a correction factor to be determined. With this abstraction in
mind, we construct an algorithm that computes the slackness of truth-telling
constraints associated to the Ennis-Keister program for the ‘β-economy’. If
for β = 1 the constraint slacks then the optimum has been found. Otherwise,
a search for β is constructed, with increments that depend on the degree of
individual gain that a type misrepresentation generates.

The previous exposition refers to weak implementation. Let us suppose now
that a sought-after value β, organizing bank reserves according to the modified
Ennis-Keister algorithm, has been found. By construction, a patient individ-
ual reveals her type under the assumption that others report truthfully. But
nowhere in this design it has been taken into account what individuals prefer to
do in the scenario of a bank run, when other patient depositors choose to with-
draw. This leads to the question of how reserves should be designed within the
class of mechanisms without multiple equilibria. Our approach is to incorporate
into our method no-run constraints introduced by Peck and Shell (2003). Our
version is broader, eliminating all runs in mixed, symmetric strategies. We do
find another dynamic programming leading to the desired solution. It applies
new shadow prices: date-1 consumption is socially valued according to αAu(c1),
while that for date 2 is valued according to βu(c2), for suitably chosen α and
β that vary along the history but are still computable by a single-dimensional
search protocol as before.

This intuitive approach is shown to be applicable to new questions alluded
to above. The main conclusion is that sufficiently high (implicit) interest rates
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guarantee incentive compatibility and bank stability. But even within the basic
environment of independent shocks, new findings are demonstrated. We show,
for instance, that bank runs are pervasive. While Peck and Shell (2003) appeal
to a strong demand for liquidity — setting the constant A equal to ten — in
order to find bank fragility, we show that an increase in the supply of liquidity
plays the same role, without additional assumptions. All that is needed is an
increase in the population size, making insurance easier to provide. In particular,
we find two equilibria besides the optimal one. Namely a run in pure strategies
and a run in mixed strategies.

The distortions that make strong implementation possible, not surprisingly,
are found to vary with insurance levels. We use simulations to document prop-
erties not explored in the literature to date. For instance, and again in the basic
economy with independent shocks, the size of the economy produces two oppos-
ing effects. First, it facilitates the provision of insurance as a larger population
can more easily pool risks. And, with higher insurance, run strategies become
more attractive. Second, in order to discourage runs, an economy with many
traders can spread distortions across many events. Hence, a distortion placed
after a long sequence of withdrawals produces a small tax on the average depos-
itor (a kind of ‘backloading’ property common in the public finance literature).
The final effect confirms a seemingly paradoxical outcome: with independent
shocks, runs can be removed in very large economies without substantial welfare
losses for the average person. In particular, a run-proof management of reserves
should tax heavily only the impatient arriving late to unusually long withdrawal
events. This conclusion, however, is not valid when correlation is introduced,
and we present a careful discussion for this reversal below.

The rest of the paper is divided as follows. Section 2 presents the basic
environment with the standard monitoring assumption. Section 3 introduces a
shadow-price approach to take distortions into account in simulations. Section 4
illustrates how the method can be used to characterize financial fragility. Section
5 extends the analysis to the design of run-proof reserves. Section 6 presents the
environment with imperfect monitoring and the corresponding findings. Section
7 concludes.

2 The environment without insolvency

The benchmark economy in our analysis is hit by a shock ω with support Ω ≡
{0, 1}N . The parameter N stands for the number of ex ante identical depositors
that live for two dates and derive utility from pairs (c1, c2) of consumption
provided by a bank—the benevolent social planner, who controls the aggregate
endowment Y—according to positions and announcements about preferences
that are private information. While for now an individual can be of two types,
0 or 1, in the last section of the paper we add a third type in order to discuss
insolvency.

Person i is called impatient if ωi = 0 and called patient otherwise. The
utility in the former case is Au(c1) and in the latter is u(c1 + c2), where A ≥ 1
and u(c) = 1

1−δ c
1−δ and δ > 1. Thus only patient individuals can substitute

consumption across dates. The resources not consumed in date 1 are reinvested
at gross rate-of-return R > 1. These preferences have been used by Green and
Lin (2000), with A = 1, and Peck and Shell (2003), with A = 10.
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Feasible transfers must be incentive-compatible and satisfy a sequential-
service constraint. The sequential-service constraint prevents date-1 consump-
tion transferred to a person in position i to depend on information provided by
someone at position n for n > i.

In the standard model, each individual draws a unique position i in {1, ..., N}
with probability 1

N and, as a result, the realization ωi, without knowing the
other coordinates of ω. As in Peck and Shell (2003), we shall assume that the
individual is not informed of his position i. But we also want to consider a case
in which shocks are correlated and let the degree of correlation vary in a simple
manner, having independence as a particular case. The details about this more
general stochastic process for types are given at the end of this section. In
comparative-statics exercises with variations in population sizes, we shall keep
the per capita endowment e = Y

N constant as the population size, N , varies.
A compact description of candidates for optimal allocations follows from

additional notation. Let us denote by ωi the vector (ω1, ω2, ..., ωi), and by
(ω−i, z) the profile that results from substituting the i-th coordinate of ω by
z. Given that R > 1 we can restrict attention to transfers that assigns, to
someone at position i, xi

(

ωi−1, 0
)

units of date-1 consumption, if that person
is impatient, or yi (ω) units of date-2 consumption, otherwise. The sequential-
service requirement has thus shaped the domains of xi and yi. We shall denote
by (x, y) a typical pair of transfer functions. We notice that (x, y) is feasible if

N
∑

i=1

(

(1− ωi)xi

(

ωi−1, 0
)

+ ωiR
−1yi(ω)

)

≤ Y , (1)

and incentive-compatible if

E

[

1

N

N
∑

i=1

u (yi (ω−i, 1))

]

≥ E

[

1

N

N
∑

i=1

u
(

xi

(

ωi−1, 0
))

]

, (2)

that is, when patient individuals that are not informed of their positions agree
with revelation. 4

The planner’s problem is that of maximizing the representative-agent utility,
before types and positions are assigned,

E

[

1

N

N
∑

i=1

(

(1− ωi)Au
(

xi

(

ωi−1, 0
))

+ ωiu (yi (ω))
)

]

, (3)

subject to (1) and (2).
A realization ω is interpreted as the type-composition of a queue for being

served by the bank. We let the probability distribution on types for someone
in position i depend on the realized type for the person in position i − 1. In
particular, the first-position person is impatient with probability p. And the
person in position i is assumed to have the same type of the previous individual
in the queue with probability θ. Accordingly, the probability distribution for
position i on {0, 1} is (1− ωi−1, ωi−1) times

T ≡

[

θ 1− θ
1− θ θ

]

.

4The expectations in (2) are taken with respect to the distribution of ω−i on {0, 1}N−1,
given that ωi = 1.
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Therefore, a history ω has probability

P (ω) = ω̄1

[

p
1− p

] N
∏

i=2

ω̄i−1T ω̄
′1−ω1

i (1− p)ω1

[

θN−1−s(ω)(1− θ)s(ω)
]

if s(ω) =
∑N−1

i |ωi+1−ωi| is the number of type switches and ω̄i =
(

1− ωi ωi

)

.

3 The Lagrangian approach

The planner’s problem defined above aims to find the best incentive-compatible
mechanism (x, y). As it will become clear further below, every (x, y) defines a
game of announcements and it can happen that this game have multiple equi-
libria, with the intended revelation-equilibrium being just one of them. But
before we can address multiplicity, it is important to be able to compute the
optimal (x, y) defined above. While Green and Lin (2000) finds a closed form
solution for N = 3 and independent shocks, Ennis and Keister (2009), hence-
forth EK, derive a recursive method that handles correlated shocks (although
with a different specification compared to the setup above). Our objective is to
extend the Ennis-Keister (2009) approach. But one problem is that, like in the
situation addressed by Green and Lin (2000), the incentive constraints could be
ignored, while this is not the case for (2) above when A and θ are arbitrary. We
shall see, however, that an intuitive extension is possible if we shift the attention
away from the objective (3) and focus instead on a lagrangian version.

3.1 The objective for weak implementation

Proposition 1 The optimum can be computed by [ignoring (2) and] replacing
the objective (3) with

max
(x,y)

∑

ω

P (ω)
∑

i

[

(1− ωi)
(

α
ωi−1

i

)δ
u(xi) + ωi (βi)

δ
u(yi)

]

,

where (αi, βi)
N
i=1are functions of ω [determined in close form for each candidate

Lagrange multiplier for (2)].

Proof. A patient agent when in position i believes that announcement profile
ω−i happens with probability

Pr(ω−i|ωi = 1) =
Pr(ω−i, [ωi = 1])

Pr([ωi = 1])
=

P (ω−i, 1)
∑

w P (w−i, 1)
=

P (ω−i, 1)
∑

wi−1 P (wi−1, 1)

where the denominator can be written as qi = (p, 1−p)T i−1 ([0, 1]′)5. Therefore,
the incentive constraint (2) can be rewritten as

1

N

∑

i

1

qi

∑

[ω:ωi=1]

P (ω)
[

u (yi (ω−i, 1))− u
(

xi

(

ωi−1, 0
))

]

=

1

N

∑

ω

P (ω)
∑

i

1

qi

[

ωiu (yi (ω−i, 1))− (1 − ωi)γ
ωi−1

i u
(

xi

(

ωi−1, 0
))

]

≥ 0

5Note that p = 0.5 implies that qi = 0.5 for all i
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where, for t ∈ {0, 1}, γt
i stands for ((1− θ)/θ)1−2t when i > 1, and for (1−p)/p,

otherwise. The term γ
ωi−1

i is actually equal to the ratio between P (ωi−1, 1)
and P (ωi−1, 0) which appears in the expression above when the summation is
taking place over ω in Ω [as in (3)] instead of ω in ω ∈ Ω : ωi = 1} [as in (2)].
After this adjustment the slack in the truth-telling constraint, which appears in
the lagrangian, becomes written as a summation with weights P (ω) as in the
objective function.

If λ denotes the lagrangian multiplier for (2) then the planner’s problem can
be stated as

max
(x,y)

{

1

N

∑

ω

P (ω)

(

∑

i

[

(1− ωi)
(

α
ωi−1

i

)δ
u(xi) + ωi (βi)

δ u(yi)
]

)

; (1)

}

where αt
i =

(

A− λ
qi
γt
i

)1/δ

and βi =
(

1 + λ
qi

)1/δ

. Notice that the q’s and γ’s

can be computed using only properties of the distribution of partial histories,
and nothing else (they are invariant to λ). Hence the coefficients α’s and β’s
are computed in close form, and the proof is now complete.

3.2 Candidate policy functions

Now the EK dynamic-programming approach can be applied to solve the modi-
fied problem for each candidate multiplier. In effect, consider the date-2 partial
problem faced by the planner after history ω:

max
y

{

∑

i

(βi)
δ u(yi);

∑

i

ωiyi(ω) ≤ Ra

}

,

where a denotes the sum of resources not consumed in date 1. Its solution must
satisfy yi = βi/µ

1/δ if µ is the multiplier for the resource constraint. Since it
binds at the optimal solution, then µ1/δ = (

∑

i ωiβi)/Ra, which yields

yi =
βi

∑

k ωkβk
Ra. (4)

Therefore, the corresponding optimal value is (fN (ω))δu(a), where fN(ω) =
R1/δ−1

∑

k ωkβk. Keeping this contingent-solution fixed, the planner faces after
position N − 1 the partial problem

max
c≤a

{

Tt+1,1

(

(

αt
N

)δ
u(c) + fN (·, 0)δu(a− c)

)

+ Tt+1,2

(

fN(·, 1)δu(a)
)}

where a now denotes resources not consumed at the first N − 1 positions, t =
ωN−1, and Ti,j denotes the element (i, j) in matrix T . The solution is now

c =
αt
N

αt
N + fN (·, 0)

a,

which produces the corresponding value

u(a)
(

Tt+1,1[α
t
N + fN(·, 0)]δ + Tt+1,2[fN (, ·, 1)]δ

)

= u(a)
(

fN−1(·)
)δ

.
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Similar algebra can be done to show that the optimal solution for i < N − 1 is
always

ci =
αt
i

αt
i + fi(·, 0)

a

and, likewise, the optimal value is u(a)
(

fi−1(·)
)δ

. The f ’s are coefficients for

‘splitting the pie’ and are functions of partial histories. They are moreover fully
determined by the system given by

fi(·) =
(

Tt+1,1[α
t
i+1 + fi+1(·, 0)]

δ + Tt+1,2[fi+1(·, 1)]
δ
)1/δ

, (5)

if i > 0, and

f0 =
(

p[α1 + f1(0)]
δ + (1− p)[f1(1)]

δ
)1/δ

, (6)

otherwise. The value for objective in the lagrangian/planner problem is there-
fore N−1u(Y )[f0]

δ.

3.3 Iterating on multipliers

Unlike EK, we must verify whether a given discount β is correct. This is done
by computing (2) under the implied allocation. If the incentive constraint is
violated (slacks), β must be increased (reduced). The following proposition
establishes a recursive method for computing the slack in the constraint. In
the same way that we have found policies fi(ω

i), determining consumption as
a fraction of existing reserves at partial history ωi, we shall look for partial
sums in the expectations that define the slack in truth-telling constraints, and
organize these terms by partial histories, using the notation gω

i

i as follows. Let
us inspect the expression for the slack for given ω, as in the proof of Proposition
1, isolate the term

∑

i

1

qi

[

ωiu (yi (ω−i, 1))− (1− ωi)γ
ωi−1

i u
(

xi

(

ωi−1, 0
))

]

and, in particular, consider the part associated to date-2 consumption. We write

gωN =
∑

i

1

qi
ωiu (yi)

where yi is given by (4) for ω.

Proposition 2 For each history ω, define gωN =
∑

i
ωi

qi

(

〈ω,β〉
βiR

)1/δ

. If gω
i

i is

defined as

Tt+1,1

[

g
(·,0)
i+1

(

1 +
αt
i+1

fi+1(·, 0)

)δ−1
]

+ Tt+1,2

[

g
(·,1)
i+1 −

1

qi+1

(

1 +
fi+1(·, 0)

αt
i+1

)δ−1
]

for i > 0, and

p

[

g
(0)
1

(

1 +
α1

f1(0)

)δ−1
]

+ (1− p)

[

g
(1)
1 −

1

q1

(

1 +
f1(0)

α1

)δ−1
]

for i = 0, then N−1u(Y )g0 equals the slack in the truth-telling constraint when
evaluated at the optimal mechanism implied by β.
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Proof. The patient’s payoff, in terms of an average across positions, given ω,
is u(a)gωN divided by N , where a is the endowment saved for date 2. Using

now (4), we have gωN =
∑

i
ωi

qi

(

ωβ
βiR

)δ−1

. A patient person can now proceed to

compute the slack in his or her constraint according to deviation payoffs which
vary across positions. We can compute the slack by restating the payoff u(a)gωN ,
with adjustments for either the opportunity from lying or for the law of motion
of reserves, and according to a series of contingencies. If this person has drawn
position N (ωN = 1) the corresponding expression is

g
(·,1)
N u(a)−

1

qN

u(xN )

where xN is the date-1 transfers at (ωN−1, 0). If this person has not drawn
position N (ωN = 0) , there is still an impact of xN on available reserves that,
when taken into account yields

g
(·,0)
N u(a− xN ).

Integrating over these two contingencies using the Markov chain gives us a
function of ωN−1 compactly written as

Tt+1,1

(

g
(·,0)
N u(a− xN )

)

+ Tt+1,2

(

g
(·,1)
N u(a)− (1/qN)u(xN )

)

where a is now the endowment saved after the firstN−1 positions and t = ωN−1.

Now, using optimal value for xN this expression amounts to u(a)gω
N−1

N−1 as in
the statement of the proposition.

Similar and straightforward algebra can be used to show that this partial
measure of incentives to tell the truth for position i < N equals u(a)gω

i−1

i−1 if a
is the quantity saved for position i, as in the statement of the proposition.

The proof demonstrates that one can start with the measure gωN , sum-
marizing the expected payoff from telling the truth at ω, and then recursively
compute adjustments according to the what happens if the patient person draws
each potential position. Integrating over all contingencies is facilitated by the
Markov assumption. In summary, date-1 consumption affects the incentives of
a patient person by reducing resources saved for date 2 and by its effect on
misrepresentation payoffs. The former is accounted by the factor multiplying

g
(·,0)
i+1 in the first term of gω

i

i in the statement of the proposition, while the latter
is the expression being subtracted in the second term.

The proposition gives us g0 as a proxy for the slack on truth-telling con-
straints, which can then guide increases in implicit interest rates through changes
in the multiplier λ (proposition 1). The EK method is, in this way, extended
along the lines of penalty-function methods. The algorithm performs a simple
search, by bracketing the positive orthant, until either g0 = 0 is found or g0 > 0
for λ = 0.

4 Financial stability

In this section we study the existence of run equilibria, and the cost in avoiding
them. The optimal mechanism defines a game of announcements where patient
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agents can lie with probability π. Run equilibria are symmetric Bayesian-Nash
equilibria of this game such that π > 0. In order to study the existence of runs
for a fixed mechanism (x, y), we let for π ∈ [0, 1]

w(π) =
1

N

∑

i

Eπ

[

ωiu(yi(ω))− (1− ωi)u(xi

(

ωi−1, 0
)

)
]

(7)

denote the relative payoff of truth-telling when other patient individuals are
lying with probability π. In terms of the signal of the function w, a patient
individual tells the truth (runs) if w is positive (negative), and the best reply
to π is the interval [0, 1] when w(π) = 0. Notice that w is a property of a
weakly implementable (x, y) that describes its potential fragility, and that w(0)
can be computed according to the construction of g0 derived above and the
corresponding iterations of multipliers in our algorithm.

4.1 Pervasive runs

The computation of w(π) for π > 0, as in Figure 1, is a by-product of the
algorithm for strong implementation outlined below.
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Figure 1: A mixed-strategy run equilibrium

Figure 1 presents the function w for some economies with iid shocks, which
is the case when θ = .5 and p = .5 (we keep p = .5 throughout the paper).
The numbers in parenthesis correspond to the values of the pair of parameters
(A,N). The three decreasing curves are representations of weak implementation
discussed so far. The other curve, which bounces back after a tangency at the
horizontal axis, has to be explained later because it corresponds to a w after
judiciously selected distortions on (x, y) are introduced and which accomplishes
strong implementation.

In these examples, weak implementation with independent shocks feature
w(π) decreasing in π because a patient person thinks that telling the truth
becomes increasing unattractive as more people are running, leaving less and
less resources left for date 2. The fact that reserves are planned to be constantly
reduced with a sequence of zeros — say, along the contingency ω = (0, 0, ...) — is
easily understood when we take into account the role of homothetic preferences.
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After a given sequence of zeros, the planned transfers are computed as if future
shocks are drawn from P , and not from a transformation of P generated by
run strategies. Since preferences are homothetic, the drop in reserves up to this
point has no effect on how the pie is planned to be divided from this point
onwards. As result, a plan of providing insurance based on P for the remaining
traders is maintained, which means that some sharing of the growth potential
R with impatient people will continue to drive reserves down during a run. A
key question is thus whether the function w eventually crosses into negative
territory, when panic is widespread and π approaches one, demonstrating that
an equilibrium-run exists. Intuitively, one factor leading to w negative is the
level of liquidity insurance ‘demanded’ by the impatient. This factor has been
emphasized by Peck and Shell (2003), with A increasing from 1 [as in Green and
Lin (2000,2003)] to 10, and by EK, with increases in δ across examples. But the
preceding discussion suggests that N also plays a big role. For, if N is large and
shocks are independent, more insurance is planned and the consequent depletion
of reserves lasts longer as the sequence of 0-announcements keep coming.

It can also happen that w is everywhere negative but at point π = 0.
This case is illustrated by the lowest curve, which corresponds to a similar
parametrization in Peck and Shell (2003, appendix B). The optimal allocation
is constrained since w(0) = 0, and there is a run equilibrium in pure strategies
since w(1) < 0. The highest curve shows that the the best-reply correspondence
changes, and no runs are found, in the same economy, when A = 1. This exer-
cise confirms that run equilibria can be obtained in small population economies
by increasing A. And, in the another direction, one can increase the population
size N to 100 to show that runs do not require a high value for A (neither a
high value for δ used in the run example constructed by EK with independent
shocks). The conclusion is that runs are always motivated by too much risk
sharing. In addition, the large population example illustrates that there are
mixed-strategy equilibria whenever the optimum is unconstrained and there is
a run equilibrium in pure strategies.

The role of N in these examples take us to the limit result in Bertolai et
al. (2011). They show that welfare of a Peck-Shell economy with independent
shocks approaches that of a of an economy with a continuum of people as N
grows to infinity. Their proof does not rely on homothetic preferences nor
bounds on risk aversion. And moreover, they show the truth-telling constraint
of the ‘continuum’ problem is active if and only if A ≥ R. Bearing in mind this
characterization of large-population economies, we guess and verify, numerically,
the following claim for our homothetic economy, given the intuition constructed
for the law of motion of reserves during a run.

Claim Assume that shocks are independent. There exist mixed-strategy runs
in all economies with A < R and N sufficiently high. On the converse,
there are no mixed-strategy runs in economies with A ≥ R.

4.2 Persistence and weak implementation

Because persistence introduces a load on memory requirements for numerical
work that grows significantly with N , we have not attempted to study limit
properties with θ = .75 in general. The characterization of economies featuring
active constraints is more subtle in this case, and the theorem in Bertolai et
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al. (2011) cannot serve as guidance. But we do find that the propensity to run
increases when N is fixed and θ shifts from .5 to .75, for N is a large range. This
tells us that mixed-strategy runs are still common, but the way that (A,R,N)
determine the slack in truth-telling constraints changes.
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Figure 2: Aggregate-uncertainty effects.

Figure 2 illustrates the effects of introducing aggregate uncertainty with
Markov transitions. The parameter values are the same as before, but (A,N) =
(10, 5). The two lowest curves in the graph on the left refers to first-best (fb) al-
locations for the cases of independence (θ = .5) and persistence (θ = .75). These
are mechanisms obtained by ignoring truth-telling constraints, as if types are
no longer private information. The other curves refers to weak implementation
(wi).

Let us fix attention to the first-best curves on both graphs momentarily. For
both θ’s the first best is not implementable since w(0) < 0. In addition, the fb-
w is lower (misrepresentation is more attractive) when there is less persistence
because there is more room for risk sharing. Intuitively, there is more mixing
in P . The graph on the right confirms such intuition: it can be seen that the
average date-1 consumption in the first-best allocation is higher when shocks are
independent. It can also be noticed that transfers are more sensitive to positions
on average when shocks are persistent because current shocks are very impor-
tant for predicting the future, even close to the end of the queue. That is, the
sequential-information friction proposed byWallace (1988) becomes stronger un-
der correlation. A novel result, that we shall document below, is that Lagrange
multipliers fall under correlation and, in the case of active constraints, there
is again in the capacity of providing insurance because weak-implementaion
distortions can be reduced. The reason for the fall in multipliers is explained
below. We should see, however, that the corresponding increase in the provision
of insurance makes runs more likely.

When forced to provide incentives to patient agents to tell the truth — when
forced to change (x, y) so that w(0) ≥ 0) — the planner distorts the allocation in
a way that misrepresentation becomes more attractive for higher θ. The reason
for this inversion in w’s can be found in the second graph of figure 2: planner
is able to provide incentives in the persistence case with a smaller reduction in
date-1 consumption, so that the deviation payoff does not decrease as much as in
the independent case. Intuitively, it is easier to convince patient individuals to
not run when shocks are persistent. In effect, due to persistence, a patient person
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knows that with high probability announcements will be mostly patient ones.
Telling the truth in this scenario is good since date-2 payments are high. On the
other hand, the deviation payoff for this individual is mainly concentrated (in a
probability sense) on withdrawals just after a patient announcement. Knowing
this, the planner can concentrate distortions on impatient announcements which
happens after a type innovation. That way, the planner is able to preserve a high
insurance level on average since distortions placed on withdrawals immediately
after impatient announcements can be made temporary, easily preventing lies
(again in a probability sense).6
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Figure 3: Population effects.

Figure 3 illustrates the effects of population growth on economies with per-
sistence. The graph on the right shows that the ability to maintaining risk
sharing under weak implementable allocations plays an important role when
the population increases. Welfare significantly improves even in a constrained
optimum when θ = .75, but not so much when θ = .5. If there was no in-
centive problem, insurance would increase in both cases as can be concluded
from first-best curves (fb) in the second graph. When incentives are taken into
account (wi), the curve for θ = .5 confirms that the limit result in Bertolai et al.
(2011) occurs for very low populations with Peck-Shell preferences: in the scale
presented by the graph, welfare with small N coincides with that of a very large
economy. The corresponding speed of convergence is much lower when θ = .75.
We shall see that, although welfare eventually flattens up with persistence, the
economy with θ = .75 is qualitatively different because the incentives to run
in a panic are magnified, and the remedy cost is maintained considerable as
the population grows, in contrast to the perturbation result in Bertolai et al.
(2011). There, with independent shocks, the cost of removing panics converges
to zero exponentially as the population grows.

When θ = .75, increases in population is reflected in smaller and smaller
values for w.7 The graph on the left of Figure 3 shows such shifts in w, and

6More formally, we notice, from proposition 1, that date-1 consumption has weight

αt
i =

(

A− (λ/qi)γ
t
i

)

1/δ
in the modified problem that planner solves under weak implemen-

tation. Because in general γt
i = (1/θ − 1)1−2t, such weight is invariant to t when shocks are

independent (θ = .5), while it is high for t = 0 and low for t = 1 when there is persistence
(θ > .5).

7We have seen in Figure 1 that a similar effect is occurring when shocks are independent,
which is tatonnement to the pervasiveness of run equilibria documented in the claim that
follows the figure.
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we have done the same exercise for θ = .5 (not shown in the graph). In both
cases, the shifts become smaller as N increases, but they are much larger when
θ is high. In addition, w is always much smaller in the persistent case, with
w(1) ≈ −10−2 for N = 11 in the independent case. As discussed above, the
impact of increases in N on deviation payoffs is driven by the insurance effect.
It is always higher in the persistence case because the planner can induce truth-
telling at a lower cost, allowing for higher date-1 consumption on average. As
the population grows, the distortions needed to provide incentives under weak
implementation are reduced, and the consequent impact on the provision of
insurance causes shifts on the w’s curves that keep changing, even though in
lower rates in both cases.

4.3 The cost of eliminating runs

Next we address the issue of what is the least costly way to promote distortions
in (x, y) in order to eliminate runs. We propose to measure the ‘welfare cost of
financial fragility’ by studying the effects of imposing ‘no-run constraints’ that
have been defined in Peck and Shell (2003) for a context of pure strategies. We
shall approach this matter by extending the concept to mixed strategies, and
extending the numerical work to cover these constraints simultaneously with
the standard truth-telling constraints. The new method is responsible for the
construction of the non-monotone w curve in Figure 1 which remains always
nonnegative.

We call cost of financial stability the reduction in the per capita endowment
that has to applied in order to produce an optimal welfare, under weak im-
plementation, of the same magnitude as that under strong implementation. In
other words, we seek the least costly way to introduce distortions in the econ-
omy in order to eliminate runs. We have seen that deviation payoffs are higher
when there is more persistence and when the population is larger. We recall
that Bertolai et al. (2011) construct a simple mechanism featuring strong im-
plementation and which converges to the weakly-implementable optimum when
N → ∞ and shocks are independent. Hence, we must confirm numerically,
using the Peck-Shell concept of no-run constraints, that the cost of financial
stability indeed converges to zero when θ = .5.

The methods developed so far generates a w function such that w(0) is
nonnegative. The necessary changes are guided by the following definition.

Definition 3 The optimal allocation associated to a revelation equilibrium (π =
0) for a given mechanism is strongly implementable if the w for this mechanism
is nonnegative for all π.

The idea is to force, if necessary, a better treatment of patient individuals
so that, generically, runs are not best replies. In particular, we seek to solve the
following.

SI problem Maximize (3) in (x, y), subject to (1) and to w(π) ≥ 0 for all
π ∈ [0, 1].

The following results shows that a simple extension of the current algorithm
is able to solve the SI problem.
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Proposition 4 Assume that the solution to the SI problem features w(π) = 0
at finitely many π’s and that the respective multipliers λπ’s are known. Then
the this solution can be computed by modifying the objective as

∑

ω

P (ω)
∑

i

[

(1− ωi)αi(ω
i)δu(xi) + ωiβi(ω)

δu(yi)
]

where

αi(·) =

(

A−
1

qi

∫ 1

0

λπh
i
π(·, i)dπ

)1/δ

βi(·) =

(

1 +
1

qi

∫ 1

0

λπhπ(·, i)dπ

)1/δ

and (hπ, h
i
π)

N
i=1are functions of ω determined in close form.

Proof. Let η stand for the history of announcements. A patient agent believes
that an impatient announcement happens in position i with probability

T π
t+1,1 = Tt+1,1 + πTt+1,2 = 〈ω̄i−1T, (1, π)〉,

if i > 1, and 〈(p, 1− p), (1, π)〉, otherwise. Accordingly,

Pπ(η) =
∑

ω

Pπ(η|ω)P (ω) =
∑

ω

P (ω)

N
∏

i=1

ω̄iMπη̄
′
i

If in position i, he or she believes that announcement η−i happens with proba-
bility

Pr(η−i|ωi = 1;π) =
Pπ(η−i, [ωi = 1])

Pr([ωi = 1])
= q−1

i

∑

ω

Pπ(η−i, [ωi = 1]|ω)P (ω)

= q−1
i

∑

[ω:ωi=1]

Pπ(η−i|ω)P (ω)

= q−1
i

∑

[ω:ωi=1]

P (ω)





∏

j 6=i

(

ω̄jMπ η̄
′
j

)



 =
P (η−i, t)

qi
hπ((η−i, t), i)

where Mπ =

[

1 0
π 1− π

]

and

hπ((η−i, t), i) =
∑

[ω:ωi=1]

P (ω)

P (η−i, t)





∏

j 6=i

(

ω̄jMπη̄
′
j

)



 . (8)

That way, we have

w(π) =
∑

i

1

N

∑

η
−i

Pr(η−i|ωi = 1;π)
[

u(yi(η−i, 1))− u(xi(η
i−1, 0))

]

=
1

N

∑

i

q−1
i

∑

η

P (η)hπ(η, i)[ηiu(yi(η−i, 1))− (1− ηi)u(xi(η
i−1, 0))]

=
1

N
E
∑

i

q−1
i

[

ωihπ(ω, i)u (yi (ω))− (1− ωi)h
i
π(ω

i, i)u
(

xi

(

ωi
))

]
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where expectation is now taken with respect to ω, and the h’s are given by

hk
π(·, i) =

〈

ω̄kT,
(

hk+1
π ((·, 0), i), hk+1

π ((·, 1), i)
)〉

for each ωk if hN
π (ω, i) = hπ(ω, i).

If λπ denotes the lagrangian multiplier on (7), then SI problem can be stated
as solving

max
(x,y)

{

1

N

∑

ω

P (ω)

(

∑

i

[

(1− ωi)αi(ω
i)δu(xi) + ωiβi(ω)

δu(yi)
]

)

; (1)

}

and the proof is now complete.
Again the EK dynamic-programming approach can be applied to solve such

a problem for each candidate multiplier set, λ = {λπ : π ∈ [0, 1]}. The optimal
solution is still given by (5-6), but now αi depends on ωi, not only on ωi−1 as in
the weak-implementation case. It turns out that w(π) can be computed recur-
sively in the same fashion as done for the slack in the truth-telling constraint in
Proposition 2.

Proposition 5 For a fixed belief π, define gω
i

i as

Tt+1,1

[

g
(·,0)
i+1

(

1 +
αi+1(·, 0)

fi+1(·, 0)

)δ−1
]

+Tt+1,2

[

g
(·,1)
i+1 −

hi
π((·, 1), i)

qi+1

(

1 +
fi+1(·, 0)

αi+1(·, 0)

)δ−1
]

for 0 < i < N , and

p

[

g
(0)
1

(

1 +
α1

f1(0)

)δ−1
]

+ (1 − p)

[

g
(1)
1 −

h1
π((1), 1)

q1

(

1 +
f1(0)

α1

)δ−1
]

for i = 0, together with gωN =
∑

i
ωihπ(·,i)

qi

(

〈ω,β〉
βiR

)1/δ

. Then N−1u(Y )g0 equals

w(π) when evaluated at the solution associated to λ.

Proof. The argument is identical to the one used in Proposition 2, after the
adjustment required by the introduction of the terms h and hi, and is thus
omitted.

The non-monotone curve in Figure 1 illustrates the typical case found by the
algorithm when mixed-strategy runs are rule out. In this case there is only on
critical π to be found (and only one multiplier for the solution): it corresponds
to the pivotal (in the language of linear programming) strategy for which the
corresponding no-run constraint is weakly active. Once this critical π is found,
all other constraints slack. And because the resulting non-monotone curve is
positive at 0, the standard incentive constraint (implied by the revelation prin-
ciple) also slacks. We conclude that the machinery used here to address mixed
strategies are important for an accurate assessment of the costs of financial
stability.

In order to quantify the distortion in the optimal allocation, we compute by
how much the per capita endowment should be reduced under weak implemen-
tation to achieve the welfare under strong implementation. The following table
summarizes the results for selected economies.
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Endowment reduction Interest rate: E(y)/E(x)

θ N = 3 N = 5 N = 7 first-best weak strong

.50 .0022% .0021% .0017% .4027 .9258 .9262

.75 .1543% .3173% .3786% .3572 .5874 .6092

The left side of the table shows that for all considered population sizes,
cost of financial stability is much larger when there is persistence. We also
confirm that the cost is very low in the independent case. While in Bertolai
et al. (2011) there was a noticeable convergence of Peck-Shell and Green-Lin
mechanisms (when there is disclosure of positions and traders use elimination
of dominated strategies, in computed cases, to choose truth-telling) for such
low N ’s. Hence, because there were no runs for the Green-Lin setting in the
numerical examples of Bertolai et al. (2011), the conclusion was that by letting
traders be informed of their positions in the queue — if such disclosure can
be considered feasible, what is debatable — the planner can achieve strong
implementation at a low cost (since the transfer functions of Peck-Shell and
Green-Lin mechanisms quickly converge to each other and there no runs with
disclosure). Here, by contrast, we show that disclosure is not needed. By placing
the appropriate distortions, according to our extended algorithm, we find that
the cost falls to zero very quickly when θ = .5. The effects of an increase in θ on
stability costs are very strong because the distortions needed are more severe
when there is a threat that a whole group of people is running ( the case π > 0
that has to be addressed by strong implementation). With persistence, when
forced to provide incentives to patient agents to not run, when they believe
other patient individuals are misrepresenting (when forced to change (x, y) so
that w(π) ≥ 0 for all π ∈ [0, 1]), the planner must distort withdrawals in a larger
range of 0’s. Intuitively, a deviator thinks that he or she will be bunched with
other zeros. Hence, a belief π > 0 shifts (in a probabilistic sense) the deviation
payoffs compared to the weak-implementation case. Now there is a need to
reassure patient people whose deviation payoff accrues after a type innovation,
as well as those whose deviation payoff accrues after a type persistence. Thus
the planner must now reduce the payment schedule for a larger group.

The right-side of the table documents the result for N = 5. It shows that the
ratio of average consumption in date 2 to that in date 1 increases the whenever
planner must provide incentives. And indeed the necessary increase in this proxy
for interest rates, as one moves from weak to strong implementable allocations,
is low for θ = .5 and much higher for θ = .75. Provided that correlations in
types is a reason for being concerned about runs, the table illustrates a basic
result across our experiments: a high level of interest rates is the golden rule
for financial stability.

We found a bit surprising that the cost increases with N for these small
economies. We have seen, while analyzing Figure 3, that w is much more neg-
ative, and shifts cause by population increases are larger when θ is high. This
pattern points towards a higher cost and slower convergence under persistence,
since patient agents demand more to not run, and becomes relatively more de-
manding when N increases. On one hand, as with independence, the cost of
fulfilling such demands is expected to decrease as population grows and the
aggregate state becomes more predictable. On the other hand, while the table
shows that the reduction in aggregate uncertainty is sufficient to offset increasing
demands under independence, it is not under persistence. But since the uncer-
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tainty about the fraction of impatient people in the population should vanish
as N → ∞ even when θ = .75 (as N grows the number of Markov switches also
grows, generating equal representation of impatient and patient people with in-
creasingly high probability), we expect the cost to reach a maximum at larger
N .

5 Insolvency

A fundamental feature of the economies studied until here is that depositor
actions are very easy to monitor. We now consider an extension in which the
bank is not able to recognize people’s identities during the whole first date. We
assume that it is possible for some patient people to make two successive accesses
to the bank, and that this ability is available with probability q > 0. These
are the potential ‘insiders’ that can cause large losses to the financial system in
case of a bank run. We also assume that, at the second date, the actions taken
at date 1 are matched to the people claiming transfers at the date 2. Hence the
identities are recognized and matched to actions at the second date, but this
may happen too late to make a difference in case of a run. In summary, the
record of actions become updated with a lag, as in Kocherlakota and Wallace
(1998). We shall see that the bank has to become more conservative. It has to
keep a high level of reserves because some insiders may appear with a positive
probability, and in order to keep these insiders away from embezzlement options
the bank must increase interest rates with regards to the consumption of this
subgroup.

The main purpose of this investigation is to show another side of weak im-
plementation, meaning that stability programs should be taken seriously, using
the basic ideas for calculation stability costs outlined above. For simplicity we
focus below on some basic properties for this economy under weak implemen-
tation and independent shocks. We believe that, at least for small q, the main
results about correlation and population increases apply. In what follows, we
want to show how imperfect monitoring affects the level of insurance that can
be provided, and the corresponding distortions. With this small change in the
model, patient people will not be treated equally.8. And, we should keep in
mind, that if run are possible now (and their existence follows from similar
parameter configurations as those seen above) then it is demonstrated that a
reasonably small change in the Diamond-Dybvig, following the contributions of
Peck and Shell (2003) and EK, can produce cases of insolvency in the sense that
a group of people consume zero in equilibrium, thus facing in a very low utility
in this scenario.

In the standard model, when actions are fully monitored, this double access
assumed here would have no effect on optimal allocations: once date-1 consump-
tion is first transferred to someone, and this person is identified at the second
access, the optimum arrangement would trivially give no consumption at the
second access. But the situation changes with the imperfect monitoring that
we are assuming now. It is true that, under truth-telling, patient people will be

8We also find unequal treatment of patient people under weak implementation for the
conventional Peck-Shell economy when there is persistence and p 6= 1

2
, for the Green-Lin

economy with independence and active constraints, and under strong implementation for
Peck-Shell economies with persistence.
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lead to consume at date 2, even those with the special abilities. But it is now
important to convince the ones with double access to reveal their status freely.
Under the current monitoring assumption, the bank is not able to detect this
second access and, therefore, must distort allocations if it wants this information
revealed.

As mentioned above, we now restrict attention to specifications with inde-
pendent shocks. The economy can be seen as populated by three types of agents.
Type 0 individuals are impatient and have only one access to the bank. A person
draws this type with probability p0 = p. Patient agents with single access are
designed by type 1. This is drawn with probability p1 = (1− p)(1− q). Finally,
double-access patient people are called type 2. This type occurs with probabil-
ity p2 = (1−q)q. Since we are interested in computing optimal allocation under
truth-telling beliefs, the second access can viewed as just a way for type 2 people
to separate themselves from type 1. We shall see that we can leave the issue
of double access confined to the introduction of a new truth-telling constraint,
which allows us to keep the same structure with N access to the bank as before
for much of the accounting that is needed. Accordingly, we set the aggregate

state as ω ∈ {0, 1, 2}N , which occurs with probability P (ω) = p
|ω|0
0 p

|ω|1
1 p

|ω|2
2 ,

where |ω|i ≡
∑

k I[ωk=i].
A mechanism is (x, y, z), where in addition to impatient date-1 consumption

x and date-2 consumption y for type 2, it is introduced date-2 consumption z
for type 2. The list (x, y, z) is feasible if

N
∑

i=1

(

I[ωi=0]xi(ω
i) +R−1

[

I[ωi=1]yi(ω) + I[ωi=2]zi(ω)
])

≤ Y . (9)

It is incentive-compatible if

E

[

1

N

N
∑

i=1

u (yi (ω−i, 1))

]

≥ E

[

1

N

N
∑

i=1

u
(

xi

(

ω−
i , 0

))

]

(10)

and

E

[

1

N

N
∑

i=1

u (zi (ω−i, 1))

]

≥ E

[

1

N

N
∑

i=1

u
(

xi

(

ω−
i , 0

)

+ xi+1

(

ω−
i , 0, 0

))

]

, (11)

where xN+1(ω
N−1, 0, 0) = 0. The planner’s problem is that of maximizing

U(x, y, z), defined as

E

[

1

N

N
∑

i=1

(

I[ωi=0]Au (xi (ωi)) + I[ωi=1]u (yi(ω)) + I[ωi=0]u (zi(ω))
)

]

, (12)

subject to (9), (10) and (11).
A computational method similar to that described for environment without

insolvency can be designed for this economy. The main difference between the
two cases is that the deviation payoff for type-2 individuals are not separable
among positions [there are two transfers xi and xi+1 inside the utility function on
the right-hand side of (11)]. In this situation the recursive formulation remains
valid, but we are not able to get a close solution for the optimal transfers at
each position anymore. We propose to guess a solution by approximating first-
order conditions and then to iterate on them in order to achieve a numerical
convergence to the true solution. The procedure is outlined in the appendix A.
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5.1 Numerical findings

We study the existence of pure-strategy run equilibria under the imperfect-
monitoring assumption. The following table summarizes the basic results. It
presents patient’s expected payoff in telling the truth (net of the expected payoff
in lying) when he or she believes that all other patient agents (type 1 and type
2) are lying. Parameterization is N = 5, δ = 2, p0 = 1/2, y = 3, and R = 1.05.
The table shows the effects of changes in q, the average fraction of insiders
among patient individuals, and in A.

A type
second access probability (q)

0.0% 0.5% 1.0% 2.0%

1
1 0.0087 0.0105 0.0123 0.0157
2 · · · −0.0299 −0.0296 −0.0290

10
1 −0.0043 −0.0033 −0.0024 −0.0006
2 · · · −0.0315 −0.0313 −0.0310

There are eight examples in the table, one for each pair (A, q). Accordingly,
first rows (after labels row) refers to a economy in which A = 1, and first column
(after column type) corresponds to iid economy with perfect monitoring (PM)
studied in the previous sections. It can be seen that there exists a complete
(all patient runs) pure-strategy run only when A = 10. Such result is consistent
with the PM iid case: there is not insurance enough to sustain a run equilibrium
since A, δ, and N are low. This suggests that run equilibria is as easy to find in
IM case as in the PM case. However, the fact that run strategy is always much
more attractive for type-2 people is evidence that partial runs (in which only
type 2 runs) can exist in economies where perfect monitoring would eliminate it.
In this sense, a new source of instability emerges. We have seen that insurance
level is the essence of run existence in the PM case. Now, a run would exist in
economies with not so high insurance level, but with weaker monitoring capacity.

Increasing q from zero to 2% always decreases willingness to run since the
relative payoff in telling the truth increases in all rows when changing columns
from the left to the right. The reason is that the more probable is type 2, more
distortion is necessary to incentive double-access patient agent to tell the truth.
Such distortions reduce insurance level and, therefore, the incentive to run.

6 Final remarks

In this paper, we have taken the Peck-Shell (2003) setup as a benchmark for
studying the occurrence of runs, and have identified the important role played
by the provision of insurance/liquidity on financial stability, with particular
emphasis on the size of the population. We have also presented a stronger
version of the limit result of Bertolai et al. (2011) in the following sense. We use
a generalization of the no-run-constraint concept due to Peck and Shell (2003)
and extend the recursive method due to Ennis and Keister (2009) to incorporate
the constraint in the case of homothetic preferences. We then show that runs
can be eliminated in the standard model at a low cost when the population
is small, and at a negligible cost when the population is increased, without
appealing to disclosure of information or taking the limit as the population size
grows to infinity as in Bertolai et al. (2011).
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Having showed that runs are pervasive, and that the most efficient way to
avoid them may require a careful computation of the effects of mixed strategies,
we also discuss the effects of persistence on the generation of types along the
queue, as well as the effects of insolvency. We find that persistence increases
the cost of avoiding runs by more than an order of magnitude, and that for
small populations the costs are substantially higher in comparison to the inde-
pendence case. We then show that a small change in the model may produce
insolvency. While the level of liquidly insurance falls down as a result of the need
to avoid insolvency, bank fragility can still be generated as before. This possi-
bility suggests that the concept of no-run constraints should be taken seriously
in a broad sense.

The recursive method has proven very tractable with active constraints. Its
construction highlights a simple and enduring message for all experiments: bank
stability requires a high interest rate. This golden-rule kind of principle is in
contrast with the discussion presented by Wallace (1988) of the main features
of the Diamond-Dybvig model. There it is argued that intermediaries would
compete to supply contracts with implicit returns resembling those simulated
here under weak implementation. The need to assure uniqueness of equilibrium,
which was not addressed by Wallace (1988), now tell us that the interest rates
supported by this kind of competition might be too low to convince people to
focus on the future, a need strongly emphasized by Thornton among other early
thinkers.
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A The imperfect-monitoring algorithm

As in the perfect monitoring case, we guess the true value for λ, compute optimal
solution relative to this guess, and then update multiplier guess in a penalty
function fashion. We still calculate relative optimal solution recursively, but
now there is an additional procedure in doing so. It is motivated by the non-
separability in date 1 consumption in type-2 truth-telling constraint. In what
follows, we present how recursive computation of optimal lagrangian value is
modified by this non-separability.

First, observe that if we define

w1(x, y) ≡ E

{

1

N

N
∑

i=1

[

u
(

yi (ω−i, 1)
)

− u
(

xi

(

ω−
i , 0

)

)]

}

and

w2(x, z) ≡ E

{

1

N

N
∑

i=1

[

u
(

zi (ω−i, 2)
)

− u
(

xi

(

ω−
i , 0

)

+ xi+1

(

ω−
i , 0, 0

)

)

}

then the lagrangian in the imperfect monitoring case is

L(x, y, z) = U(x, y, z) + λ1w1(x, y) + λ2w2(x, z).

Proposition 6 Suppose that we know the set θ = {θ1, ..., θN}, where θn(ω
n−1)

is the ratio xn(ω
n−1, 0)/xn+1(ω

n−1, 0, 0) at the optimal solution relative to the
current guess for λ. Then the optimum value for the lagrangian relative to λ is

L(λ) =
1

N
u(Y )

(

f0

1 (1)
)δ

where f j
n(t) is defined as

{

p0

[

(αt
n)

1−δ[aδ − λ2(p2/p0)(1 + θ−1
n )1−δ] + f j

n+1(0)

(αt
n + f j

n+1(0))
1−δ

]

+
2
∑

k=1

pk

{

f
j
+
k

n+1(k)
}δ
}

1
δ

in which α ≡
(

A− λ1
p1

p0

)
1
δ

and αt
n ≡

(

αδ − λ2
p2

p0
(1 + θ−1

n )δ − λ2
p2

p2
0

I[t=0]

(1+θn−1)δ

)1/δ

,

and the condition

f
(j1,j2)
N+1 (ω) ≡ R1/δ−1

∑

k

jk(1 + λk)
1/δ

23



Proof. Collecting terms for date 2 consumptions in history ω, and using equal
treatment among type 1 and among type 2, we have that planner must choose
how to allocate an amount a(ω)R between patient types in date 2

max

{

∑

t

(1 + λt)|ω|tu

(

φta(ω)R

|ω|t

)

;φ1 + φ2 ≤ 1

}

=

u(a(ω)R)min

{

∑

t

(1 + λt)(|ω|t)
δ (φt)

1−δ
;φ1 + φ2 ≤ 1

}

where |ω|t =
∑

i I[ωi=t]. The solution is easily seen to be φt =
|ω|t(1+λt)

1/δ

∑
k |ω|k(1+λk)1/δ

,

which produces optimal value

vN+1(ω) ≡ u(a(ω)R)

{

∑

k

|ω|k(1 + λk)
1/δ

}δ

= u(a(ω))
{

f
(|ω|1,|ω|2)
N+1

}δ

Consider planner choice before the last position and after meeting j1 patient
agents of type 1 and j2 patient agents of type 2. If a = a(ωN−2, t) denotes the
amount in the bank at this moment, then

vjN (ωN−2, t) = max
xN

{

p0

[

αδu(xN )− λ2
p2
p0

u(xN + xN+1) +
{

f j
N+1

}δ

u(a− xN )

]

+
∑

k

pk

[

{

f
j+
k

N+1

}δ

u(a)

]

− I[t=0]λ2
p2
p0

V (xN−1 + xN )

}

where j = (j1, j2), j
+
1 = j + (1, 0), and j+2 = j + (0, 1). Observe that the

type of the last agent to access the bank, t, is relevant to determine current
consumption. The solution satisfies

(

a

xN
− 1

)δ [

(α1
N )δ − λ2

p2
p20

I[t=0]

(xN−1/xN + 1)δ

]

= (f j
N+1)

δ

If we use the ratio θN−1, the solution is xN =
(

1 + f j
N+1/α

t
N

)−1

a. Now,

plugging these solutions in the objective function we have

vN (ωN−2, t) = u(a)(f j
N (t))δ − I[t=0]λ2

p2
p0

u(xN−1 + x∗
N )

Now, consider planner choice before the last two positions. If we define vN−1(ω
N−3, t)

as

max
x

{

p0
[

αδu(x)
]

+

2
∑
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pkvN (ωN−2, k)− I[t=0]λ2
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}
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}
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Necessary first-order condition is

(α

x

)δ

− λ2
p2
p20

I[t=0]

(xN−2 + x)δ
− λ2

p2
p0

1

(x + x∗
N )δ

=
(f j

N (0))δ

(a − x)δ

Using the ratios (θN−1, θN−2) and atN−1, we can rewrite it as

(αN−1

x

)δ

− λ2
p2
p0

I[t=0]

(xN−2 + x)δ
=

(f j
N (0))δ

(a− x)δ

whose solution is xN−1 = (1 + f j
N (0)/αt

N−1)
−1s. Plugging this solution in the

objective function, we have

vN−1(ω
N−3, t) = u(a)

{

f j
N−1(t)

}δ

− I[t=0]λ2
p2
p0

u(xN−2 + x∗
N−1)

Similar algebra can be used to get the result

vn(ω
n−2, t) = u(a)

{

f j
n(t)

}δ
− I[t=0]λ2

p2
p0

u(xn−1 + x∗
n)

for all n < N − 1. The last step is to note that v1(∅) equals the maximum
lagrangian value relative to λ.

The previous result shows that if we know θ we are able to compute optimal
solution relative to λ by iterating object fn. However, we generally do not know
θ. What we do is to is to guess this set. After computing a solution relative
to such guess, we verify if the ratios defined by the current solution and this
set agree. If not, we use this new set of ratios as a guess for the next step.
This procedure is repeated until convergence. After convergence, we evaluate
violation in truth-telling constraints and update multipliers if necessary.

For completeness, we report recursive relation on truth-telling constraints.
We have wt =

1
N u(a)g01(t), where g01(t) can be recursively computed using

gjn(t) = p0

[

gjn+1(t)(f
j
n+1(0))

1−δ −Θn(t)(α
t
n)

1−δ

(αt
n + f j

n+1(0))
1−δ

]

+

2
∑

k=1

pk

[

g
j+k
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]

and condition gjN+1(t) ≡ jt

(

R(1+λt)
1
δ

∑
k jk(1+λk)

1
δ

)1−δ

, where Θn(t) =
pt

p0

(

1 +
I[t=2]

θn

)1−δ

.

This relation can be obtained by just plugging optimal solution in wt, from the
end of the queue to its beginning.
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