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GENERALIZED EMPIRICAL LIKELIHOOD/MINIMUM CONTRAST
ESTIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONS

MARCIO POLETTI LAURINIT
LUIZ KOODI HOTTA

ABSTRACT. In this study we approach the semiparametric estimation of Stochastic Dif-
ferential Equations employing methods of generalized empirical likelihood and generalized
minimum contrast. The results obtained demonstrate that the estimators proposed, partic-
ularly, the Ezponentially Tilted Empirical Likelihood (Schennach (2007)) estimator, obtain
better results than those of the Generalized Methods of Moment generally used in the es-
timation of stochastic differential equations. These results are derived from the robustness
properties of this method in the presence of problems of incorrect specification, which, in the
context of the estimation of stochastic differential equations, occurs by using the process’ ap-
proximate discretization in the construction of moment conditions. The analyses are carried
out by means of Monte Carlo experiments for unconditional and conditional formulations of
moment conditions.

Key Words: Stochastic Differential Equations, Empirical Likelihood, Generalized Minimum

Contrast.

1. INTRODUCTION

The use of stochastic processes in continuous time in the modeling and pricing of financial
instruments is one of the basis of the modern theory of Finance, and its origin can be traced
back to Bachelier (1900)’s seminal study. The use of stochastic processes in continuous time is
justified by the mathematical convenience in relation to the use of processes in discrete time
and the possibility of employing the mathematical theory developed for the general class of
processes known as continuous semi-martingales, making it possible to perform an application
of the whole theory of pricing by no-arbitrage (Harrison and Kreps (1979), Harrison and

Pliska (1981) and Delbaen and Schachermayer (1994)) in this context. The basic objects of
1
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the modeling of stochastic processes in continuous time are the so-called Stochastic Differential

Equations, which are objects represented in the general form:

(11) dXt = M(t, Xt) + O'(t, Xt)th,

where p(t, X;) represents the deterministic part of the process (instantaneous drift), o(t, X;)
represents the stochastic component (volatility) of the process, and W, is the so-called Wiener
process or Brownian Motion. This representation is useful because it makes it possible to
define the evolution of the process trajectories X; by means of a representation given by a
stochastic integration (e.g Rogers and Williams (2000), Karatzas and Shreve (1987), Kloeden
and Platen (1992)):

t t

,U,(t,Xt)dt—f—/ O'(t,Xt)th.

to

(1.2) X, :X0+/t

0

Different specifications of the drift (¢, X¢) and volatility o (¢, X}) processes in the stochastic
differential equation give rise to processes with distinct properties. These properties enable
the representation of a wide class of processes used in finance. Focusing on the modeling of
short-term interest rates, a series of alternative specifications for the modeling of short-term
interest rates have been employed. Table 1 presents some formulations used in the literature,
comprising the models of Merton (1973), Vasicek (1977), Cox et al. (1985), Dothan (1978),
Black and Scholes (1973), Brennan and Schwartz (1980), Cox et al. (1980) and Cox (1975).
Notably, on its last line is defined the model called Generalized Cox-Ingersoll-Ross (CIR),
containing all the previous models as particular cases, as demonstrated in Chan et al. (1992),
which includes a general discussion on the properties of these models.

Parameter estimation in stochastic differential equations is a well developed theme in the
econometric literature', and there is a very wide range of techniques available. This range

of techniques is related to the difficulties inherent to the estimation of stochastic differential

IFor a review of the literature on stochastic differential equations see Gourieroux and Monfort (1996),
Prakasa Rao (1999), Bishwal (2007) and Zivot and Wang (2006)
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Merton (1973) dX; = adt + odW
Vasicek (1977) dX; = (a+ BXy)dt + odW
CIR SR (1985) dX, = (a + BXy)dt + o X, 2dW
Dothan (1978) dX; = o X, dW
GBM (1973) dX, = BX;dt + o XodW
Brennan-Schwartz (1980) dX; = (a + SX;)dt + o X dW
CIR VR (1980) dX, = o X2dW
CEV (1975) dX, = Bdt + cdW
Generalized CIR dX; = (a+ BXy)dt + o X, dW

TABLE 1. Models for short-term interest rates.

equations, particularly in the non-existence of analytical solutions for the stochastic integration
in general cases and the problem of using discretely observed data in the estimation of a
process formulated in continuous time. As examples of estimation methods in this context,
we have maximum likelihood, generalized methods of moments (GMM), methods of simulated
moments, Martingale estimating equations, Markov chain Monte Carlo and indirect inference,
and non-parametric methods. In principle, the most recommended form of estimation consists
in employing the likelihood function, because, under the regularity conditions, the maximum
likelihood estimators are consistent, efficient and asymptotically normal. However, in the
context of the estimation of stochastic differential equations, the non-existence of general
solutions is a general difficulty found in the use of methods based on the likelihood of the
process, which is formulated by employing the transition density resulting from the solution
of the stochastic differential equation.

In the absence of analytical solutions, it is necessary to use approximations in the construc-
tion of the likelihood function, such as the use of quasi-maximum likelihood methods, which
generates estimators with minimum mean square error, or the use of simulated maximum like-
lihood, which uses simulated trajectories by Euler or Milstein discretizations in the likelihood
evaluation (Pedersen (1995)), or else approximations using Hermite expansions obtained by
Ait-Sahalia (2002). Note that, given the employment of approximations in the evaluation of
the likelihood function, the optimality properties of this estimator may not remain, and thus

other estimators could become competitive.
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Estimators using moment conditions are also often employed in the estimation of stochastic
differential equations. The estimation using the (GMM) by Hansen (1982), employing a simple
discretization of the process, may be the form most widely employed (e.g. Chan et al. (1992)).
Although the generalized method of moments is characterized by properties of consistency
and asymptotic efficiency, its properties in finite samples and in the presence of specification
problems may not be optimal. In order to tackle these problems we discuss the use of two
classes of estimators in the estimation of stochastic differential equations employing discrete
data - estimators of generalized empirical likelihood and estimators of generalized minimum
contrast, comparing their performance with that of the estimators based on estimation by the
Generalized Method of Moments. These estimators are semi-parametric in the sense that the
parametric form of the stochastic differential equation is used through moment conditions, but
the non-observed density of the process is evaluated in a non-parametric form. We analyze
the properties of these estimators using unconditional and conditional moments conditions.

The estimators presented (generalized empirical likelihood, continuous updating empirical
likelihood, exponential tilting and exponentially tilted empirical likelihood) possess the same
properties of consistency and first-order asymptotic efficiency (e.g. Smith (2001), Schennach
(2007)) as the compared GMM estimators (two-stage GMM, iterative GMM, continuous up-
dating GMM). However, theoretical results demonstrate that these estimators may have su-
perior properties in terms of bias in finite samples, and asymptotic properties of higher order
(e.g. Kitamura (2006)). Furthermore, these estimators are asymptotically efficient in the class
of semi-parametric estimators (in Bickel et al. (1993)’s sense), and have optimal properties in
terms of hypotheses tests: minimax optimality, optimality in the sense of large deviations, and
these tests are uniformly more powerful in the generalized Neyman-Person sense. The class of
estimators of generalized minimum contrast (exponential tilting and exponentially tilted em-
pirical likelihood) has characteristics of robustness in the presence of specification problems.
These characteristics of robustness of the estimators based on generalized minimum contrast
are of the utmost importance in the estimation of stochastic differential equations, and be-
cause of the non-existence of exact discretizations, all the estimators of continuous processes

employing discretely observed data are characterized by a problem of incorrect specification.
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This study discusses the use of these methods in the estimation of stochastic differential
equations, and the results obtained demonstrate that these estimators obtain superior results
when compared with the techniques generally employed of generalized methods of moments.
One result of particular interest is that the estimator of exponentially tilted empirical likeli-
hood (Schennach (2007)) obtains results that are much superior in terms of finite sample bias,
a result derived from the properties of this model’s robustness in the presence of incorrect
specification (e.g. Smith (2001), Schennach (2007), Anatolyev and Gospodinov (2011)).

Another important contribution of this paper is to show that the use of methods based on
generalized empirical likelihood/ minimum contrast gives a good performance in finite samples
through the use of unconditional moments derived from discretizations, procedure that can
usually be derived for any continuous time stochastic process. The performance of estimators
based on unconditional moments derived from Euler discretizations is comparable to results
obtained using conditional moments, which can only be obtained explicitly for a very restricted
class of models. These results indicate the excellent properties of the estimators proposed in
this article.

This article is structured as follows: section 2 presents a brief review of the estimation of
stochastic differential equations employing the GMM. Section 3 presents generalized empirical
likelihood and generalized minimum contrast based estimators, discussing their properties,
similarities and potential advantages in the estimation of stochastic differential equations. A
series of Monte Carlo’s experiments is performed in section 4 for the estimation based on the
unconditional moments and in section 5 for the estimation based on conditional moments, aim-
ing at stressing some properties of the estimators discussed in this study. The final conclusions
are in section 6, showing concisely that the estimators proposed, which are unprecedented in
the context of estimation of stochastic differential equations, obtain results that are superior to
the techniques of the Generalized Methods of Moments generally employed in the estimation

of stochastic differential equations.
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2. ESTIMATION BY THE GENERALIZED METHOD OF MOMENTS

As the technique of the GMM is widely employed in the econometric literature for the

estimation of stochastic differential equations, and as it also has deep connections with the

estimation methods of Maximum empirical likelihood and generalized minimum contrast, we

will start by reviewing this methodology, giving special attention to the moment conditions

employed in the estimation.The estimation by the Generalized Method of Moments was in-

troduced by Hansen (1982). The method is based on population moments conditions:

(2.1) Elg(6o, X¢)] =0,

where 6y is a vector of true values of the parameters.

conditions are defined as:

T

%Zg(@,wt).

t=1

(2.2) g(0) =

GMM estimators are defined as solutions to the system:

T
. 1
2. _ 1 _
(2.3) 0 = argy ;1 g(0,24) =0

The analogous sample moments

Note that, except in the case of the number of parameters being equal to the number of

moment conditions (exactly identified system), the problem described in 2.3 is not identified

when the number of conditions is less than the number of parameters, or in general there is

no solution when the number of conditions are greater than the number of parameters. In

order to obtain a single solution it is used a number of moment conditions larger or equal the

number of parameters and define the following criterion function:

(2.4)
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and the minimization of this function defines the optimum solution of the problem, where
W is a positive definite weighting matrix. Hansen (1982) demonstrates that the efficient

asymptotic solution of the GMM estimation is obtained when this matrix is given by:

@ v v () <00

and thus the optimal weight is obtained by employing the inverse of the sample variance-
covariance matrix. This matrix is usually estimated employing the class of HAC estimators

of Newey and West (1987) given by:

T—1
(2.6) Q= > k(s)T(07),
s=—(T-1)

where k is a kernel function dependent on the choice of a bandwidth h, which can be chosen

using the Newey and West (1987)’s or Andrews (1991)’s procedures:

1 T

(2.7) Ty(6%) = T > 907, w)g(6", wiss),
t=1

The efficient estimator of the GMM is then obtained as a solution of the problem:

(2.8) f = arg m@iny (6) Q(6)G ().

There are several forms of performing the implementation of the GMM estimator. The
initial form proposed by Hansen (1982) is the estimator known as two-stage GMM. This
estimator is obtained by performing a first stage by obtaining an initial estimator 0 =
argming (A) Qg (), where Q is an initial weight matrix, normally an identity matrix. From
this first stage, a HAC matrix ) (0*) is calculated in function of this initial estimation, and
the final estimation of the GMM estimator is obtained as 6 = argming (6)' Q (6%)7 (#) with

the HAC matrix obtained in the first stage.
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Note that, in this case, there is a dependence on the results of the second stage with the
initial estimation on the first stage, and thus this procedure can create a first-order bias
impairing the performance of the estimator in finite samples (Hansen et al. (1996)). In order
to solve this problem, two alternative procedures are proposed. The first procedure is known
as Iterative GMM, which is a modification of the two-stage procedure. In this procedure, the
estimation of the first stage is reinitialized with the result of the second stage estimation, and
this iteration continues up to when a variation in the vector of parameters becomes smaller
than a chosen epsilon.

Another possible estimator is known as GMM with continuous updating (Hansen et al.
(1996)). In this case the estimation of the parameter 0 is not performed in stages, but it
is performed simultaneously by employing an algorithm of numerical optimization. Starting
from an initial vector 0y (generally chosen employing the two-stage GMM method) the estima-
tion is performed by 6 = arg ming () Q(6*)7 (A), but now 6 and Q (6*) are simultaneously
determined. This procedure obtains the same first-order properties as the Iterative GMM esti-
mator, but according to Hansen et al. (1996), it has better properties in terms of bias in finite
samples. According to Newey and Smith (2004) and Anatolyev (2005), the three methods are
asymptotically equivalent, but the second-order bias of the continuous updating estimator is
smaller, and the iterations increase the estimator’s efficiency. However, the numerical proce-
dure can be subject to multiple modes in the objective function, which renders this estimator
numerically unstable.

In order to perform the estimation of stochastic differential equations by employing the
GMM, it is necessary to formulate the moment conditions in terms of some discretized form
of the model. The first approach employed is by means of the simple discretization adopted
in Chan et al. (1992) for the Generalized CIR model (Table 1) given by:

(2.9) X1 — Xo = ap + BoXt + &4
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with the conditions: E(gi41) = 0 and E(e}, ) = 02X, In this case, we can formulate

the moment conditions necessary for the estimation of parameters (a, 3,7,02)), by defining

err1= X1 — Xt — ag — BpX¢ , and defining four moment conditions in this form:

Et+1

et 41X¢
(2.10) g =|
Eir1 — 00 X;

2
i (E?H - U(%XtW)Xt

and applying the GMM estimation defined by equation 2.8. Moment conditions for the
other submodels of the Generalized CIR family can be obtained by imposing the necessary
restrictions, according to Table I in Chan et al. (1992). Note that this simple discretization is
not consistent - the discretization does not converge to the true solution of the process, since
it ignores the time interval between observations. A simple form of obtaining a consistent
discretization for this process is to employ a first-order Euler discretization, which defines
moment conditions given by a residual vector in this form: ey ay= e — 1 — (o + Bore) A,

and thus constructing the vector of moment conditions as:

Et+ At
€t+AtXt

(2.11) g(0) = , .
Eiint — 0o Xi At

2
| (efi a0 — 00X AKX

This is the form employed in this study. Note that the use of discretization always rep-
resents a specification problem in the inference procedure, since, even employing consistent
discretizations, the bias term caused by the discretization employed only tends to zero when
At — 0. Note that the time interval At employed in the process of discretization depends on
the frequency of data observation, and thus it is not under the researcher’s control. Therefore,
there are two sources of bias problems in the estimation of stochastic differential equations:

the first form derived from the use of Generalized Methods of Moments estimators, and an
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additional form generated by the incorrect specification given by the use of a non-exact dis-
cretization of the process. Note that in Chan et al. (1992)’s original study, the estimation
employs a simple discretization of the model rather than the Euler discretization, and this
represents a bias increase in the estimation due to a specification with a larger approximation
error. Consequences of this problem can be seen in Prakasa Rao (1999), and a supplementary
discussion of this problem is presented in section 4, which demonstrates that this discretization
problem leads to a problem of incorrect specification in the estimation of stochastic differential

equations.

3. GENERALIZED EMPIRICAL LIKELIHOOD AND GENERALIZED MINIMUM CONTRAST

ESTIMATORS

In the GMM there is a trade-off between weaker necessity of assumptions for its use and
the efficiency of the method in finite samples. Conditions of regularity for estimators of
the GMM (Hansen (1982), Newey and McFadden (1994)) involve only conditions for the
asymptotic validity of the moment conditions and do not assume stronger conditions such
as the knowledge of the process distribution, but, in finite samples, the properties of this
estimator is not optimal.

The opposite situation would be the estimation by the maximum likelihood method, which
employs not only the conditional moments of the process but all the information in the condi-
tional densities. If the process is correctly specified and meets the regularity conditions, then
it is a better asymptotically Gaussian estimator, and it also reaches optimality in measures
such as Badahur efficiency (Kitamura (2006), DasGupta (2008)). Nevertheless, employing the
maximum likelihood in the estimation of stochastic differential equations is difficult by the
non-existence of analytical forms for the solution of stochastic differential equations, and thus
it is not possible to employ parametric forms for the maximum likelihood estimation.

An alternative form, not yet explored in the literature of inference in continuous time pro-
cesses, is the use of a form of non-parametric mazimum likelihood estimation known as empiri-

cal likelihood (EL)?. According to Kitamura (2006), assuming a sequence of ITD data {xl}szl of

2 detailed review of the generalized empirical likelihood estimators can be found in Anatolyev and Gospodinov
(2011).
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an unknown density, and defining A\ as the simplex {(pl, ce,DT) Zle pr=10<p <1, t=1,...

the non-parametric log-likelihood function is defined as:

T
(31) eNP(pla"' 7pT) - Zlogpta (pla"' 7pt) S A
t=1

which can be interpreted as a log-likelihood of a multinomial distribution with support
given by the sample observations {z:};_,, even if the density z; is not a multinomial.

A notable advancement in the literature of empirical likelihood was achieved by Owen
(1991), who established connections between the non-parametric likelihood and the estimation
employing moment conditions, which is also used in the estimation by the GMM, as shown

by Qin and Lawless (1994). Assuming the condition of moments in the form:

(3.2) E [g(60, X.)] = / 9(00, X)dji = 0,60 € © C R,

it is possible to transform this estimation problem using conditions of moments in a non-
parametric likelihood problem employing implicit probabilities p;, and thus the log-likelihood

function to be maximized becomes:

T

T
eNP(pla"'apT) :Zlogpta s.t. Zg(a7xt)pt:0
t=1 t=1

The estimator that maximizes this expression is the mazimum empirical likelihood estimate.
The implicit probabilities are related to the validity of the moment conditions. These implicit
probabilities give more weight to the observations where the moment conditions are closer to
zero. Note the similarity with the estimation by the GMM, which is a simplified form that
assumes that all weights are equal, i.e., p; = 1/n.

The use of empirical likelihood is particularly important in the estimation of stochastic
differential equations because, except in a few particular cases, there are no exact solutions
for the stochastic differential equations, and thus it is not possible to construct analytically the

transition densities of the process, which makes it impossible to construct an exact likelihood
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function. Empirical likelihood method allow us to assess the likelihood of the process in a
non-parametric form, and thus they do not depend on the existence of analytical solutions for
the stochastic differential equations. This non-parametric evaluation of the likelihood function
is efficient in the semi-parametric sense (e.g. Bickel et al. (1993)), and, at the same time, it
employs the parametric specification given by the stochastic differential equation to construct
moment conditions.

A difference found with the GMM is that, in the methodology of generalized empirical
likelihood, the moment condition can be a process weakly dependent and heteroskedastic. In
order to tackle this situation, Kitamura (1997) and Kitamura and Stutzer (1997) proposes

replacing g(0, z;) for a smoothed version defined as:

m

(3.3) gv(0,z) = Z w(s)g(0, xi—s),

s=—m

where w(s) are weights obtained by a kernel function adding one, in the spirit of a HAC
estimator (Andrews (1991)) . This modification makes it possible to obtain the same conditions
of first-order asymptotic efficiency existing in the GMM methods. In this way the estimate

given by the moment conditions is given by:

T

(3.4) 0= argy Zptgw(979€t) = 0.
t=1

The use of smoothing is especially important in the estimation of discretized models, since
the Euler discretization for a discretely observed process involves independent processes only
when the interval ¢ in the discretization converges to zero. For discretely observed data, in
general the discretization interval is defined by the frequency of the observed sample. Thus, in
general, the process of the observed data with a fixed discretization is dependent, justifying the
use of smoothing. Another important property is that the use of smoothing can improve the
properties in finite samples even for IID data, as discussed in Anatolyev (2005) and Anatolyev

and Gospodinov (2011).
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An interpretation of equation 3.4 in relation to the GMM estimator is that, while in over-
identified models estimated by GMM the moment conditions are not exactly equal to zero, in
the estimators defined by this equation the moment conditions are exactly equal to zero by
weighting with the use of the empirical probabilities p;. Note that, in models exactly identified,
all the estimators proposed obtain similar results, because in all these estimators the moment
conditions are always valid. In over-identified models with valid moment conditions, all these
estimators produce the same asymptotic variance.

An alternative interpretation of the empirical likelihood estimator can be obtained, such as
that of a particular case of the generalized minimum contrast (GMC) estimator (e.g. Bickel
et al. (1993)), similar to the interpretation of the GMM estimator as an estimator of minimum
X2, or the interpretation of estimators of quasi-maximum likelihood as estimators of minimum
contrast. Defining a general divergence function between two measures of probability P and

Q as follows:

(3.5) D)~ [ <%) Q.

where ¢ is a convex function. Define M as the set of all the probability measures in R? and

(3.6) P(0) = {P €M: /g(@,x)dP - o}

and P the statistic model of all the probability measures compatible with 3.6. The problem

of minimum contrast optimization is given by

3.7 inf inf D(P,
39) 326 30 P10

where p denote the dominating measure in this model.
Thus in a correctly specified model, this discrepancy must be minimal in § = 6y. In the
case of empirical likelihood estimators, the point estimation § is the one that minimizes the

discrepancy between p; and uniform weights.
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Some measures of divergence employed in the literature are the Kullback-Leibler divergence
and the entropy measure. This problem of minimum contrast can be formulated in the form
of moment conditions E(g(6p, X¢)) = 0, by employing a modified condition in the form of Eq.
3.4 and the minimum contrast estimator is obtained with the use of some contrast function

hT:

T

3.8 0, = i h .
(3.8) a@%g;;T@ﬂ

An important result is that an adequate choice of the discrepancy function can lead to
a unified representation of empirical maximum likelihood and minimum contrast estimators.
This representation can be obtained when the function hr(p;) belongs to the Cressie-Read

family of discrepancies given by:

[y(y + )] H(Tp ) — 1]

(39 () = ;

and with restrictions on the definition of the Cressie-Read discrepancy, there are particular
cases of several classes of estimators. The empirical likelihood is obtained with the restriction
~v — 0 in the discrepancy function hr(p;); the generalized minimum contrast method, known
as exponential tilting (ET) of Kitamura and Stutzer (1997) and Imbens et al. (1998), is ob-
tained by v — —1 and the Continuous Updating estimator employing the empirical likelihood
formulation is obtained by v — 1.

Smith (2001) demonstrated that it is possible to define another estimator that also includes
these estimators as particular cases. The method of generalized empirical likelihood (GEL) of

(Smith (2001)) is obtained as a solution for the following saddle point problem:

T
~ . 1 ! w
(3.10) 0, = arg min | max — tg_l P ()\ g (G,xt)) ,

where A defines Lagrange multipliers associated to restriction:
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T
(3.11) > pig”(0,2) = 0.
t=1

Estimators are obtained solving the previous equation with the first-order condition:

T
09" (0, xy)
12 / : _
(3.12) ;1 DA < 20 ) 0,

where:

(3.13) p= i (Ng"(0,)

This generalized likelihood estimator includes the empirical likelihood estimator, assuming
the same conditions on v of the Cressie-Read divergence function, and modifying functions h
and p. The empirical likelihood estimator is obtained with h(p) = —Innp and p(§) = In(1-¢),
the estimator of exponential tilting with h(p) = nplnnp and p(§) = —exp(§), the estimator of
continuous updating with h(p) = (np)? and p(¢) = —(14+&)?/23. The solution can be obtained
by numerical optimization or via quasi-Newton iterative methods, and the solution can be
formulated in a problem of a smaller dimension by means of a dual formulation (Kitamura
(2006)), which is the method used in this study.

An additional class of estimators can be obtained by combining the empirical likelihood es-
timator and the exponential tilting estimator, generating the estimator known as exponentially
tilted empirical likelihood (ETEL) proposed by Schennach (2007). This estimator is defined

as:

T
14 = in (771N h(p(9
(3.14) argmem< > >>>,
where p;(0) is the solution of:

3See Table 1 in Smith (2001) for further details
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T

(3.15) min 77" " h(py)
{pt}tT:1 t=1

subject to Zthl peg(0,x¢) = 0 and Zthl pr = 1, where E(pt) = —In(Tpy) and h(p;) =
Tpdn(Tpy).

Note that the ETEL (exponentially tilted empirical likelihood) estimator employs the ex-
ponential tilting method to find probabilities w;(f) and the empirical likelihood method to
estimate the parameter vector 9. These probabilities are related to multipliers A through the

relation:

(M©yg(6.2))

(3.16) 5i(0) = - .
TS (erete.)

An important property of the ETEL class of estimators is their behavior in the presence of
incorrect specification. Imbens et al. (1998) point out that the empirical likelihood estimator
can have inadequate behavior in the presence of incorrect specification, due to the presence of
a singularity in its influence function; and theorem 1 in Smith (2001) demonstrates that the
asymptotic properties of the empirical likelihood estimator can be severely degraded in the
presence of minimum specification problems. This effect also affects the estimations of implicit
probabilities p;, because, in the presence of specification problems, the implicit probabilities
in likelihood problems tend to concentrate in the extreme observations, in opposition to what
is expected from a robust estimator.

The result obtained by Smith (2001) is that, in the class of minimum discrepancy estimators,
only the exponential tilting estimator has adequate behavior in the presence of specification
problems because its influence function does not present singularities. As the ETEL estimator
is a combination of empirical likelihood estimators and of the exponential tilting estimator,
it maintains the characteristics of asymptotic efficiency and minimum bias of estimator EL,
and, additionally, it is robust in the presence of specification problems, due to the use of

the exponential tilting estimator to estimate the implicit probabilities, as shown in theorems
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8-10 in Smith (2001), indicating that this estimator is \/n consistent even in the presence of
specification problems.

However, the interpretation of the results of the ETEL estimator should be literally in-
terpreted as an estimation based on pseudo-true values, and in this case the convergence
properties in the misspecified models refer to normal rates of convergence for the pseudo-true
value that minimizes the (Kullback-Leibler) distance between the true conditional distribu-
tion of the generating process and a conditional distribution in function of these pseudo-true
values, e.g. Gourieroux and Monfort (1995).

The usual interpretation of robustness properties for moment conditions estimators when
the data are generated by a perturbed version in a infinitesimal neighborhood of the true
model can be found in Kitamura et al. (2009) for IID data and Evdokimov et al. (2009) for
weakly dependent data, and are based on the use of Hellinger distance in the construction of
contrast function 3.5. The use of Hellinger distance in estimation of Stochastic Differential
Equations was already explored in Giet and Lubrano (2008), and properties of the Hellinger
distance estimator formulated as a generalized minimum contrast to the estimation stochastic
differential equations is a possibility to be explored.

We can now sum up some common properties of the estimators discussed in this study. The
first property is that all the estimators presented (two-stage GMM, Iterative GMM, contin-
uous updating GMM, generalized empirical likelihood, exponential tilting and exponentially
tilted empirical likelihood) have the same properties of consistency and first-order asymptotic
efficiency (e.g. Smith (2001), Schennach (2007)), they are efficient in the semi-parametric
sense of Bickel et al. (1993), in the validity of specified moment conditions. All the estimators
have the same asymptotic variance, but the superior results in terms of bias and asymptotic
properties of higher order are valid for the estimators based on generalized empirical likeli-
hood, exponential tilting and exponentially tilted empirical likelihood (e.g. Kitamura (2006)).
The class of estimators based on empirical likelihood also presents optimal properties in term
of hypotheses tests: these tests are optimum in the minimax and large deviation criteria and
are uniformly more powerful in the generalized sense of Neyman-Person, as demonstrated in

Kitamura (2006).
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However, the performance in finite samples can be rather different. The two-stage GMM es-
timator can be severely biased in the sizes of the sample employed in economics and finance,
and continuous updating estimators are numerically unstable due to the existence of multiple
modes in the objective function, for example, Hansen et al. (1996)). Newey and Smith (2004)
demonstrate that the empirical likelihood estimator must have a bias in finite samples smaller
than the bias of estimators of the exponential tilting and continuous updating classes. In em-
pirical likelihood and exponential tilting estimators, the bias does not grow with the number
of moment conditions, as happens with the GMM estimator. Newey and Smith (2004) also
demonstrate that estimators based on GEL have good properties in terms of second-order
bias. Another interesting property is that estimators based on GMC and GEL are invariant
to linear transformation in the moment conditions vector, which does not occur with the two-
stage GMM estimator. The finite sample properties of these estimators in in the estimation

of stochastic differential equations are explored below.

4. MONTE CARLO EVIDENCE - UNCONDITIONAL MOMENTS

As all these methods are first order and asymptotically equivalent, to perform an analysis
of the finite sample properties of these estimators, we performed a Monte Carlo analysis
evaluating several properties of these estimators, particularly the bias, mean squared error
and mean absolute error, accompanied by a discussion about their validity in the presence of
incorrect specification in the context of estimation of stochastic differential equations.

The Monte Carlo procedure consists in simulating Generalized CIR models, Vasicek and
CIR SR* models, performing the estimation with the proposed estimation methods using
the unconditional moment conditions defined in section 2, and, based on these estimations,
evaluating the bias, mean square error (MSE) and the mean absolute error (MAE) in relation
to each parameter estimated. Figures 4.1, 4.2, 4.3 and 4.4 show MSE and MAE sequentially

for each parameter and each method, for a more easy visualization of results.

4These experiments were performed for the other models as well and produce similar results, but are not
presented here for reasons of space.
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The simulation procedure employed for the Generalized CIR process employs a Milstein
discretization (e.g. Milstein (1974), Kloeden and Platen (1992)) to generate process trajec-
tories, since in this process there is no exact analytical solution for the transition density.
For the Vasicek and CIR SR processes, we employed the exact transition density to generate
simulated trajectories (e.g. Ait-Sahalia (2002)).

Note that this detail is of fundamental importance. Before discussing this point, we will
introduce the notation of strong convergence of discretizations. Suppose that we want to
generate a trajectory of the stochastic differential equation dX; = u(t, X;) + o(t, X¢)dW; em-
ploying a discretization that generates trajectories YtA of this process, and that the trajectories
of this approximation converged to the true trajectory. An approximation Y;A is said to be

strong order convergent vy > 0 if there are positive constants K and - so that each A is valid:

E (1% - Y*|) < KA,

in which K does not depend on the discretization interval /. On usual Lipschitz and
growth conditions, it is possible to demonstrate (e.g. Kloeden and Platen (1992), Prakasa Rao
(1999)) that the Euler discretization converges with strong order v = 0.5 and the Milstein
discretization (Milstein (1974)) is strong order convergent with v = 1.

As the discretization employed in moment conditions is of strong order inferior to that
employed in the process simulation, an incorrect specification problem arises generated by the
discretization employed. This problem occurs in a more intense form when the exact solution
of the stochastic differential equation can be used to generate the process trajectory. The
fundamental point is that, in the estimation based on approximated discretizations, there is
always a bias generated by the process discretization, and one of the objectives of the Monte
Carlo study is to verify whether any method manages to produce a reduction in the bias in
relation to this effect, which can be interpreted as a specification problem. Note that in Chan
et al. (1992)’s original article, the discretization employed is still simpler than Euler’s, and

thus the existing bias in the estimators must be even greater.
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GMM2S GMMITER GMMCUE GEL ET GELCUE ETEL SGEL SET SGELCUE SETEL
mean o 0.0585 0.0585 0.0585 0.0555 0.0591 0.0594 0.0427 0.0529 0.0584 0.0592 0.0419
bias o 0.0177 0.0177 0.0177 0.0147 0.0183 0.0186 0.0019 0.0121 0.0176 0.0184 0.0011
mse a  0.0006 0.0006 0.0006 0.0005 0.0006 0.0006 0.0001  0.0004 0.0006 0.0006 0.0001
mae a  0.0190 0.0190 0.0190 0.0171 0.0198 0.0199 0.0055 0.0147 0.0194 0.0198 0.0063
mean § —0.8595 —0.8595 —0.8595 —0.8095 —0.8696 —0.8736 —0.5588 —0.7687 —0.8596 —0.8720 —0.5719
bias 8 —0.2674 —0.2674 —0.2674 —0.2174 —0.2775 —0.2815 0.0333 —0.1766 —0.2675 —0.2799 0.0202
mse 3 0.1347 0.1347 0.1347 0.1142 0.1478 0.1462 0.0060 0.0874 0.1452 0.1465 0.0058
mae 3 0.2884 0.2884 0.2884 0.2599 0.3050 0.3057 0.0501 0.2229 0.3017 0.3059 0.0533
mean o2 2.0247 2.0247 2.0247 1.5815 1.3286  1.3440 1.7024 1.6174 1.3095 1.3495 1.7090
bias 02  0.3543 0.3543 0.3543 —0.0889 —0.3418 —0.3264 0.0320 —0.0530 —0.3609 —0.3209 0.0386
mse 02 2.9527 2.9527 2.9527 1.4709 1.9360 2.1132 0.0045 0.9256 1.4653 2.3160 0.0143
mae 02 0.7768 0.7768 0.7768 0.7532  0.3050 1.0843 0.0447 0.6088 0.9348 1.0786 0.0597
mean v 1.4939 1.4939 1.4939 1.4426 1.3792 1.3749 1.5450 1.4612 1.3880 1.3790 1.5450
bias v —0.0060 —0.0060 —0.0060 —0.0573 —0.1207 —0.1250 0.0451 —0.0387 —0.1119 —0.1209 0.0451
mse v 0.0263 0.0263 0.0263 0.0206  0.0413 0.0445 0.0049 0.0146 0.0367 0.0477 0.0050
mae v 0.0996 0.0996 0.0996 0.1079 0.1667 0.1746 0.0479 0.0876 0.1547 0.1747 0.0507

TABLE 2. Monte Carlo - Generalized CIR Model - o =0.0408, 5 =-0.5921,
0% =1.6704, v =1.4999.

The first Monte Carlo experiment corresponds to the simulation of 1,000 trajectories of
size 474 of a Generalized CIR process with a parameter vector given by a =0.0408, § =-
0.5921, 02 =1.6704 and v =1.4999. This set of parameters, and all other parameters used
in Monte Carlo analysis, are based on estimated values in the article by Chan et al. (1992)
for the series of Treasury Bills, and thus reflect values consistent with real data. The results
of this experiment are displayed in Table 2 and Figure 4.1. Each figure shows respectively
the bias and MSE obtained by each estimator. The results obtained demonstrate that there
is a relevant bias in the estimation of all the parameters, and particularly of parameter o2.
The results in terms of the size of the bias and of the mean square error are quite similar for
almost all the estimators, except for estimators ETEL and SETEL, which present far superior
results in terms of bias, MSE and MAE in relation to the other methods for all the parameters
estimated, which is evident in Figure 4.1.

In the Monte Carlo experiment for the Vasicek process (Table 3 and Figure 4.2), we sim-
ulated again 1,000 trajectories with a parameter vector given by o = 0.0154, § = —0.1779,
02 = 0.0004 and v = 0. The results indicate again that the ETEL estimators’ performance is
superior, and it is also noticeable that, in this experiment, the estimator with the worst per-
formance was the estimator GMMCUE. For the CIR SR process (Table 4 and Figure 4.3), we
simulated trajectories of the process with o = 0.0189, 5 = —0.2339, 0% = 0.0073 and v = 0.5.
The same behavior of better performance of the ETEL class of estimators was observed, as

well as a similar performance of the other estimators.
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GMM2S GMMITER GMMCUE GEL ET GELCUE ETEL SGEL SET SGELCUE SETEL
mean o 0.0263 0.0263 0.0330 0.0235 0.0262 0.0262 0.0181 0.0220 0.0262 0.0263 0.0174
bias «  0.0109 0.0109 0.0176 0.0081 0.0108 0.0108 0.0027 0.0066 0.0108 0.0109 0.0020
mse o 0.0003 0.0003 0.0271 0.0002 0.0003 0.0003 <le-4  0.0002 0.0003 0.0004 <le-4
mae o 0.0129 0.0129 0.0195 0.0101 0.0128 0.0129 0.0035 0.0086 0.0128 0.0130 0.0036
mean 8 —0.3031 —0.3034 —0.3096 —0.2668 —0.3015 —0.3018 —0.1705 —0.2470 —0.3022 —0.3035 —0.1701
bias 8 —0.1252 —0.1255 —0.1317 —0.0889 —0.1236 —0.1239 0.0074 —0.0691 —0.1243 —0.1256 0.0078
mse S 0.0408 0.0412 0.0850 0.0257 0.0405 0.0410 <le-4 0.0188 0.0405 0.0422 0.0001
mae S 0.1442 0.1446 0.1517 0.1087 0.1429 0.1437 0.0075 0.0897 0.1434 0.1451 0.0079
mean o2  0.0004 0.0004 0.0042 0.0002 0.0004 0.0004 —0.0007 0.0002 0.0004 0.0004 —0.0004
bias 02 <le-4 <le-4 0.0038 —0.0002 <-le-4 <-le-4 —0.0011 —0.0002 <-le-4 <-le-4 —0.0008
mse 02 <le-4 <le-4 0.0089 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4
mae 02 <le-4 <le-4 0.0038 0.0002 0.1429 <le-4 0.0017 0.0003 <le-4 <le-4 0.0022
TABLE 3. Monte Carlo - Vasicek Model - o = 0.0154, 8 = —0.1779, o2 =
0.0004, v = 0.
GMM2S GMMITER GMMCUE GEL ET GELCUE ETEL SGEL SET SGELCUE SETEL
mean o« 0.0273 0.0274 0.0273 0.0263 0.0268 0.0272 0.0354 0.0241 0.0269 0.0273 0.0322
bias « —0.0116 —0.0115 —0.0116 —0.0126 —0.0121 —0.0117 —0.0035 —0.0148 —0.0120 —0.0116 —0.0067
mse o 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 0.0003 0.0003 0.0003 0.0002
mae o 0.0139 0.0139 0.0139 0.0143 0.0143 0.0140 0.0095 0.0161 0.0143 0.0139 0.0114
mean § —0.3536 —0.3549 —0.3547 —0.2539 —0.3438 —0.3520 —0.2243 —0.2501 —0.3441 —0.3543 —0.2222
bias f —0.1197 —0.1210 —0.1208 —0.0200 —0.1099 —0.1181 0.0096 —0.0162 —0.1102 —0.1204 0.0117
mse 8 0.0374 0.0382 0.0382 0.0086 0.0337 0.0373 0.0003 0.0077 0.0346 0.0381 0.0003
mae 8 0.1468 0.1482 0.1480 0.0497 0.1377 0.1458 0.0110 0.0457 0.1387 0.1478 0.0128
mean o2 0.0072 0.0072 0.0072 0.0077 0.0073 0.0072 0.0103 0.0088 0.0073 0.0072 0.0115
bias 02 <-le-4 <-le-4 <-le-4 0.0004 <-le-4 <-le-4 0.0030 0.0015 <-le-4 <-le-4 0.0042
mse 02 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4
mae 02 0.0004 0.0004 0.0004 0.0009 0.1377 0.0004 0.0041 0.0019 0.0004 0.0004 0.0054
TABLE 4. Monte Carlo - CIR-SR Model - o = 0.0189,3 = —0.2339,02 =
0.0073, v = 0.5.

Note that, so far, the problem of incorrect specification was caused only by the use of
approximated discretization in the construction of the process’ moment conditions. In order
to verify whether the better performance properties of the ETEL class of estimators are
valid in more general situations of incorrect specification, we employed, as data generating
process, trajectories of the Generalized CIR process with parameter vector o =0.0408, 8 =-
0.5921, 02 =1.6704 and v =1.4999. However, as specification of the estimated model, we now
employed a CIR SR model assuming that v = .5.

The results of this experiment (Table 5 and Figure 4.4) indicate that, in this general case, a
better performance of ETEL and ET estimators also occurs, but the other estimators have a
much worse performance in relation to the estimation of parameter o2. Note that the problem
of incorrect specification is expected, in this situation, to affect mainly the estimation of the
process variance, because, in the classes of CIR models, the volatility is a function of the level

of process with parameter ~.
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GMM2S GMMITER GMMCUE GEL ET GELCUE ETEL SGEL SET SGELCUE SETEL
mean o 0.0589 0.0688 0.0461 0.0198 0.0312 0.0426 0.0187 0.0167 0.0313 0.0548 0.0210
bias o  0.0181 0.0280 0.0053 —0.0210 —0.0096 0.0018 —0.0221 —0.0241 —0.0095 0.0140 —0.0198
mse o 0.0009 0.0015 0.0020 0.0007 0.0024 0.0034 0.0032  0.0007 0.0114 0.0025 0.0119
mae o 0.0217 0.0334 0.0366 0.0236  0.0227 0.0501 0.0230 0.0249 0.0252 0.0434 0.0271
mean § —0.8801 —1.0498 —0.6860 —0.2530 —0.3515 —0.6374 —0.2211 —0.2307 —0.3347 —0.8366 —0.2279
bias 8 —0.2880 —0.4577 —0.0939 0.3391  0.2406 —0.0453 0.3710 0.3614 0.2574 —0.2445 0.3642
mse 3 0.1998 0.4041 0.5297 0.1449 0.1839 0.8179 0.1387 0.1368 0.1857 0.6700 0.1675
mae 3 0.3408 0.5425 0.5972 0.3739 0.3916  0.8046 0.3710 0.3685 0.3848 0.7148 0.3753
mean o2  0.0081 0.0081 0.0082 0.0093 0.0269 0.0107 0.0147 0.0136 0.0140 0.0085 0.0188
bias 02 —1.6623 —1.6623 —1.6622 —1.6611 —1.6435 —1.6597 —1.6557 —1.6568 —1.6564 —1.6619 —1.6516
mse 02 2.7632 2.7633 2.7628 2.7593 2.9352 2.7588 2.7417  2.7452 2.7466 2.7621 2.7358
mae 02 1.6623 1.6623 1.6622 1.6611 0.3916 1.6604 1.6557 1.6568 1.6565 1.6619 1.6539

TABLE 5. Monte Carlo - Misspecified Model - a =0.0408, [/ =-
0.5921,02 =1.6704, v =1.4999.

Monte Carlo Generalized CIR o =.0.0408 3 =.5921 0% =1.6704 y=1.4999
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FIGURE 4.1. Monte Carlo Generalized CIR Model

To show the effect of sample size in the estimation, we performed the same Monte Carlo
procedure for the CIR SR model®, now using a sample size of 2000, shown in Table 6. As
expected, the results indicate that all the estimators show substantial reductions in the bias,
MSE and MAE, but still are dominated by ETEL estimator. The results of this table also
show that GMM based estimators on need a larger sample size to achieve a performance close
to the estimators based on GEL/GMC, as is evident in this table.

Although it is interesting to analyze the effect of discretization on the properties of esti-

mators, there is a simple way to perform this analysis, since it is impossible to separate the

SWe perform this same study for other models studied and the results are similar.
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Monte Carlo Vasicek a =0.0154 B =-.1779 0% =0.0004 y=0
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FIGURE 4.2. Monte Carlo Vasicek Model

Monte Carlo CIR-SR a =0.0189 3 =-.2339 0% =0.0073 y=0.5
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FIGURE 4.3. Monte Carlo CIR-SR Model

effect of sample size in this analysis. For example a study with a sample size of 500 with dis-
cretization interval of 1/12, as studied in this article, would be equivalent to a sample of 41.66
years. A sample discretization of 1/365 (daily data) with 500 observations covers a period of

1.36 years, a very limited time span to analyze a series of interest rates, and very sensitive to
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Monte Carlo Generalized CIR a =0.0408 (3 =.5921 0% =1.6704 y=1.4999
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F1GURE 4.4. Monte Carlo Misspecified CIR Model

GMM2S GMMITER GMMCUE GEL ET GELCUE ETEL SGEL SET SGELCUE SETEL
mean o 0.0209 0.0209 0.0209 0.0209 0.0209 0.0209 0.0194 0.0206 0.0209 0.0209 0.0194
bias o 0.0020 0.0020 0.0020 0.0020 0.0020  0.0020 0.0005 0.0017 0.0020 0.0020 0.0005
mse a <le-4 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4
mae «  0.0040 0.0040 0.0040 0.0039 0.0040 0.0040 0.0022 0.0036 0.0040 0.0040 0.0019
mean S —0.2621 —0.2623 —0.2623 —0.2611 —0.2620 —0.2619 —0.2257 —0.2573 —0.2622 —0.2624 —0.2260
bias 8 —0.0282 —0.0284 —0.0284 —0.0272 —0.0281 —0.0280 0.0082 —0.0234 —0.0283 —0.0285 0.0079
mse S 0.0049 0.0049 0.0049 0.0047 0.0049 0.0049 0.0002 0.0041 0.0049 0.0050 0.0002
mae 5 0.0528 0.0529 0.0529 0.0508 0.0527  0.0527 0.0094 0.0474 0.0527 0.0530 0.0096
mean o> 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 0.0075
bias 02 <-le-4 <-le-4 <-le-4 <-le-4 <-le-4 <-le-4 <le-4 <le-4 <-le-4 <-le-4 0.0002
mse o2 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4
mae 62 0.0002 0.0002 0.0002 0.0002 0.0527 0.0002 0.0006 0.0002 0.0002 0.0002 0.0010

TABLE 6. Monte Carlo - CIR-SR Model , Sample Size 2000 - o = 0.0189, 3 =
—.2339,02 = 0.0073, v = .5.

initial conditions, since for the usual values of the persistence parameter estimated for models
of interest rates (e.g. Chan et al. (1992)) the half-life for the error correction process is much
longer than this period, and so the results are very dependent on the initial conditions and

not representative.

5. MONTE CARLO EVIDENCE - CONDITIONAL MOMENTS

In the simulations presented so far, the properties of the estimators were studied using
simple Euler discretizations of stochastic differential equations. Although this methodology is

applicable to any stochastic differential equation without requiring the existence of analytical
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solutions, for the models with known analytical solutions the use of simple discretizations of the
process may represent as inefficient use of the available information when it is possible to derive
explicit conditional moments of the process. To analyze the properties of the estimators based
on conditional moments we performed two analysis. In the first analysis we build conditional
moment conditions obtained by analytical solution of stochastic differential equation for the
CIR SR process. In the second we use the Ité6 Conditional Moment Generator Methodology
proposed in Zhou (2003) which gives conditional moments through the use of Generalized Ito’s
lemma (Merton (1971) and Lo (1988))5. In these two procedures we performed a Monte Carlo
analysis for the CIR-SR process with the same parameters used in the previous section.

Rewriting the CIR SR model as:

(5.1) dr(t) = k(0 — r(t))dt + o/r(t)dW (t)

the transition density of this process is given by the following non-central x? density:

(5.2) Prt)(T) = Dy2npag) /e, (T) = Dy (yn,) (€tT)
4k
. ith : ¢ =
(5:3) s o2(1 — exp(—kt))
(5.4) n = 4rkb/o?
(5.5) At = aroexp(—kt).

Thus we obtain the conditional moments as:

(56) E[T’t’TS] =7rs+ rse_’i(t_s) + 6 (1 _ e—li(t—s))
(5 7) \% [ ’ ] — 0_2( —k(t—s) _ —QH(t—S)) + 00_2 (1 _ —H(t—s))Q
: arfrfrs] = rs—(e e - .

6This approach was recently generalized in Cuchiero et al. (2010) and Filipovic et al. (2011) to a class known
as Polynomial Process, which also include Levy processes in addition to affine diffusion models.
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and from these moments create the array of four moment conditions by multiplying these
two conditions by 7;_1. The Monte Carlo analysis from this specification is shown in Table 7.
Compared to the results obtained for the estimation using non-conditional moments (Table 4)
results indicate that with this specification we obtain a bias generally smaller (but positive)
for the parameter «, but at the cost of a higher bias for the parameter 3, while for a parameter
the results are equivalent. In terms of mse and mae for all parameters the results are basically

equivalent to the estimation using unconditional moments.

GMM2S GMMITER GMMCUE GEL ET GELCUE ETEL SGEL SET SGELCUE SETEL

mean o 0.0284 0.0284 0.0284 0.0284 0.0284 0.0284 0.0212 0.0284 0.0284 0.0284 0.0212
bias «  0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0023 0.0095 0.0095 0.0095 0.0023
mse o 0.0002 0.0002 0.0002 0.0002 0.0002  0.0002 0.0001 0.0002 0.0002 0.0002 <le-4
mae o 0.0113 0.0113 0.0112 0.0112 0.0112 0.0112 0.0047 0.0112 0.0112 0.0113 0.0045
mean § —0.3619 —0.3619 —0.3619 —0.3612 —0.3608 —0.3617 —0.2452 —0.3605 —0.3617 —0.3620 —0.2452
bias 8 —0.1280 —0.1280 —0.1280 —0.1273 —0.1269 —0.1278 —0.0113 —0.1266 —0.1278 —0.1281 —0.0113
mse 8 0.0414 0.0414 0.0414 0.0411 0.0412 0.0413 0.0048 0.0409 0.0413 0.0414 0.0047
mae 5 0.1486 0.1486 0.1486 0.1479  0.1475 0.1485 0.0308 0.1471 0.1480 0.1486 0.0300
mean o2 0.0073 0.0073 0.0073 0.0073  0.0073  0.0073 0.0074 0.0073 0.0073 0.0073 0.0075
bias 02 <-le-4 <-le-4 <-le-4 <-le-4 <-le-4 <-le-4 <le-4 <le-4 <-le-4 <-le-4 0.0002
mse 02 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4
mae 02 <le-4 <le-4 <le-4 <le-4 0.1475 <le-4 <le-4 <le-4 <le-4 <le-4 0.0003

TABLE 7. Monte Carlo - CIR-SR Model - Conditional moments - a =
0.0189, 8 = —.2339, 0% = 0.0073, v = .5.

The second methodology for the construction of conditional moments is based on the It6
Conditional Moment Generator Methodology proposed in Zhou (2003). The methodology
considers all the conditional moments of K’'th order simultaneously applying the Generalized

It6’s lemma to each 7’% and then takes the conditional expectation:

T 1
E(rf) =} + B, [/ (k=1 + 50%@: — 1)7{3—2)614 .
t

Taking the derivative with respect to time T, and interchanging the expectation and inte-
gration operators is possible to obtain a system of differential equations of the form:
dE(r})

1
abay(rs) _ k=1, L o9 0 L k2
1 E, [,usk:rs + 20 k(k —Dr, )}

subject to boundary condition Ey(rf) = rf.
The class of systems that have analytical solutions is the set of processes with solutions in

the form:
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Ei(Rr) = T OAC R, + 471 (8) (T040) — 1) g(8)

dE (R
W) _ A(8) + E(Ro) + 9(6)
where I is the KxK identity matrix and e denotes the matrix exponential.

For the CIR SR process for the solution of the system consists of the matrices A(f) and

g(B) in the form:

—K 0 0 0
2k0 + o2 —2K 0 0
A(B) =
0 3k60 + 302 -3k 0
0 0 4k + 602 —4dk
K0
0
9(B) =
0
0

In this example we follow the example in Zhou (2003), who used as moment conditions the
moments E(r%) of order K = 1,2,3,4, multiplied by rf ;, again with k = 1,2,3,4 with a total
of 16 conditional moment conditions. The results of this experiment are shown in Table 8.
The overall results compared to results obtained earlier for the CIR SR model, indicate that
this method can reduce the bias, mse and mae for the parameters «, but most notably for the
methods based on GEL/GMC . However for the parameter 3 the results are different, showing
an increase in bias for the estimators based on GMM and the GEL estimator. Similarly the
mse increase for estimators based on GMM and the GEL estimator, and decrease for the
others. For the parameter o2 the results indicate that this estimation method is slightly worst
in terms of bias and mae.

We can make some considerations on the use of conditional moments. The first important
point to note is that the class of models that admit conditional moments in analytic form
is rather limited, as opposed to the use of Euler discretizations that can be used generally.

Another important aspect to note is that the estimators based on the Generalized Ito’s lemma,



GEL/GMC ESTIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONS 28

shows complexity and computational cost much higher than the other estimators, because it
is necessary to evaluate the matrix exponential. In summary, considering the generality and
the gains in performance in finite samples, the estimators based on unconditional moments

derived from the Euler discretizations are still competing.

GMM2S GMMITER GMMCUE GEL ET GELCUE ETEL SGEL SET SGELCUE SETEL
mean o 0.0291 0.0294 0.0286 0.0231 0.0186 0.0184 0.0206 0.0192 0.0184 0.0183 0.0192
bias @ 0.0102 0.0105 0.0097 0.0042 —0.0003 —0.0005 0.0017  0.0003 —0.0005 —0.0006 0.0003
mse o 0.0003 0.0003 0.0003 0.0001 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4
mae « 0.0121 0.0124 0.0121 0.0079 0.0028 0.0027 0.0040 0.0031 0.0028 0.0028 0.0031
mean § —0.3828 —0.3901 —0.3749 —0.2916 —0.2256 —0.2245 —0.2233 —0.2230 —0.2251 —0.2243 —0.2230
bias 8 —0.1489 —0.1562 —0.1410 —0.0577 0.0083 0.0094 0.0106 0.0109 0.0088 0.0096 0.0109
mse 3 0.0549 0.0600 0.0582 0.0176 0.0003 0.0002 0.0002 0.0002 0.0003 0.0002 0.0002
mae S 0.1717 0.1789 0.1696 0.0868 0.0119 0.0114 0.0114 0.0117 0.0117 0.0111 0.0117
mean o2 0.0070 0.0069 0.0070 0.0069 0.0067 0.0066 0.0071 0.0071 0.0065 0.0065 0.0071
bias 02 —0.0003 —0.0004 —0.0003 —0.0004 —0.0006 —0.0007 —0.0002 —0.0002 —0.0008 —0.0008 —0.0002
mse 02 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4 <le-4
mae o2  0.0008 0.0008 0.0008 0.0020 0.0119 0.0011 0.0010 0.0010 0.0012 0.0013 0.0010

TABLE 8. Monte Carlo - CIR-SR Model - Itd6 Conditional Moment Generator
- o= 0.0189, 5 = —.2339,0% = 0.0073, v = .5.

6. CONCLUSIONS

In this article we consider semi-parametric methods based on the empirical likelihood /generalized
minimum contrast for the estimation of stochastic differential equations. These estimators are
characterized by properties of asymptotic efficiency of higher order, properties of optimality
in hypotheses testing and robustness of the estimators based on exponential tilting in relation
to incorrect specification. These properties are particularly important in the context of esti-
mation of stochastic differential equations, since, in general, it is not possible to construct the
exact likelihood function of the process due to the non-existence of analytical solutions (and
consequently of exact discretizations) for stochastic differential equations. These methods
allow to approximate the density of these processes using a nonparametric approximation of
the log-likelihood, allowing for the incorporation of this information into the estimates of the
parameters of the stochastic differential equations.

The results indicate that these methods yields good properties in finite samples, achieving
an overall performance superior to the generalized methods of moments usually employed in

the estimation of stochastic differential equations using moment conditions. The results also
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indicate that estimators based on the unconditional moments derived from the Euler discretiza-
tions have a performance comparable to the same estimators constructed from conditional
moments derived from transition densities. However, the last conditional moments can only
be derived in analytical form for a limited class of processes. Since the Euler discretizations
are easily obtained for almost all stochastic differential equations, the use of methodologies
based on empirical likelihood/generalized minimum contrast allows computationally simple
estimators with good properties in terms of bias and efficiency for a wide class of processes.
The results obtained also indicate that the exponentially tilted empirical likelihood esti-
mator, in particular the one proposed by Schennach (2007), obtains a performance which is
superior to other proposed techniques, due to its properties of robustness in the presence of
specification problems. As it is possible to interpret the estimation of the stochastic differen-
tial equations by employing discrete data as an incorrect specification problem, due to the use
of an approximated discretization of the model, the results of the Monte Carlo experiments
demonstrate that the performance of this estimator is quite superior to the other estimation
methods employing moment conditions. Also, in general, the estimators based on empirical
likelihood /generalized minimum contrast have a better performance in terms of bias and mean

square error than the GMM estimators.
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ABSTRACT

In this article we discuss the estimation of Stochastic Volatility (SV) models using general-
ized empirical likelihood/minimum contrast methods. We show via Monte Carlo simulations
that the proposed methods have a superior or equivalent performance to the other estimation
methods proposed in the literature to estimate SV models, and, additionally, they offer ro-
bustness properties in the presence of specification problems such as heavy-tailed distributions
and the presence of outliers.
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1. INTRODUCTION

Measurement of asset volatility is a fundamental aspect of finance. Precise volatility mea-
surements in financial asset returns are necessary in certain aspects, such as risk management
(McNeil et al. (2005)) and asset pricing (Singleton (2006)). Among the available forms for
modeling volatility, the class of models known as SV models stands out'. In this class of models,
volatility is treated as a non-observed latent factor. One of the main reason for its popularity
is that SV models can be derived from continuous time diffusions (e.g. Barndorff-Nielsen
et al. (2002)), and, thus they become closer to the pricing literature using no-arbitrage and
martingale methods. These models are also attractive because, as empirical evidence shows,
they are better at capturing stylized facts of financial series, and their predicative performance
is superior in comparison to other classes of volatility models (e.g. Koopman et al. (2005)),
such as, for example, the class of GARCH models (Engle (1982), Bollerslev (1986)). However,
as volatility is treated as a non-observable latent process, the estimation of volatility models
is more complicated than the estimation of concurrent models, such as the GARCH class,
in which volatility is a deterministic function of the past, which makes the evaluation the
likelihood function a simple procedure.

In SV models, the exact evaluation of the likelihood function, due to the presence of the
latent volatility factor, requires the calculation of an integral with a dimension equivalent to
the sample size. The numeric evaluation of this problem requires methods based on simulation,
such as importance sampling methods (e.g. Geweke (1994), Liesenfeld and Richard (2003)) or
Markov Chain Monte Carlo (MCMC) (Shephard (1993),Jacquier et al. (1994)). Although these
methods are efficient and with the currently available computational power, quite feasible,
some problems still remain, such as the determination of a function of importance appropriate
or the problem of correlation in the chains in MCMC sampling. It is also possible to work
with likelihood function approximations, such as the estimation by quasi-maximum Likelihood
(Harvey et al. (1994), Jungbacker and Koopman (2009)), based on a linearization of the SV
model. In this methodology, the evaluation of the likelihood functions is made by means of
a decomposition of the prediction error using the Kalman filter, which renders a consistent
estimator which is asymptotically Gaussian though inefficient and biased in finite samples.

Other ways of evaluating this model employ the estimation by simulation using the methods
of indirect inference and the efficient method of moments (Gourieroux et al. (1993), Gallant
and Tauchen (1996)). These two methods are asymptotically efficient, and have good proper-
ties in finite samples (Monfardini (1998)), but they are less efficient than the MCMC methods
of Shephard (1993) and Jacquier et al. (1994). The simplest estimation form for volatility
models is the method of moments, the original form of estimation employed in the estimation
of the seminal log-normal SV model proposed by Taylor (1986). This methodology was later
refined by Melino and Turnbull (1990) through the use of the generalized method of moments
(GMM) by Hansen (1982), which generates consistent and asymptotically efficient estimators.
These estimators are computationally simple, but their properties in finite samples can be
poor and they are inefficient when compared with estimators based on MCMC. A comprehen-
sive study of these estimators’ properties can be found in Andersen and Sorensen (1996), and
a complete survey about the estimation of SV models using the method of moments can be
found in Renault (2009).

'For a review of methods for estimating SV models see, for example, Broto and E. (2004), Ghysels et al.
(1996), Shepard and Andersen (2009) and Jungbacker and Koopman (2009)
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The performance of SV model estimators employing GMM is weakened by the fact that the
GMM estimator’s bias grows with the number of moment conditions (e.g. Newey and Smith
(2004)), and the efficiency in this method depends on an adequate choice of the moment
conditions. The GMM estimator manages to reach the efficiency of the maximum likelihood
estimator if one of the moments is the score function of the maximum likelihood estimator, or
if the moments employed project this function. In practice, the efficient estimation by GMM
involves the use of a large number of moment conditions. As the bias in finite samples of
the GMM estimator is proportional to the number of moments employed, there is a trade-
off between bias and variance in the estimation by GMM when a high number of moment
conditions is used. Another problem in the estimation of SV models by GMM is the lack of
robustness in the moment conditions employed. The estimation of the log-normal SV model
is based on conditions that employ moments of superior orders, and this can be a serious
problem in the presence of outliers or processes of heavy-tailed innovation. In this situation,
the effects of outliers in the sample are raised to potencies of third or fourth order, which
significantly affects the estimation in finite samples.

A further problem lies in the formulation of moment conditions. Although the GMM
estimator is semi-parametric, and thus it is not necessary to specify the distribution function of
the process, the formulation of moment conditions for SV models generally employs moments
derived from the specification of a distribution function for the innovations, as in the case
of the so-called log-normal SV model of Taylor (1986). If this assumption is not valid, the
properties of the GMM estimator may be degraded.

In this way, the computationally simplest implementation of the generalized method of mo-
ments leads to an estimator with poor properties in finite samples (Andersen and Sorensen
(1996)), and, on the other hand, the implementation of efficient estimators, such as the meth-
ods based on MCMC, are computationally intensive and subject to convergence problems. In
this study we propose an alternative form of estimation employing semi-parametric methods
of generalized empirical likelihood and generalized minimum contrast. These methods, as will
be demonstrated, represent a computationally simpler way of implementation because they
can be based on the same moment conditions as the estimators of generalized moment meth-
ods, and they produce efficient estimators with good properties in finite samples, as will be
demonstrated by a series of Monte Carlo studies. Estimators based on generalized empiri-
cal likelihood and generalized minimum contrast derive from a semi-parametric methodology,
which permits the estimation of finite dimensional parameters related to the generating process
of the parametric part of the process in question - in our case, the parameters of SV process
- but accomplishing efficiency (in the semi-parametric sense defined by Bickel et al. (1993))
by means of a non-parametric estimation for the process distribution. This enables us to use
the information in the sample in an efficient way. As this methodology uses more information
than the estimation by the generalized method of moments - since the latter employs only
moments and not the whole information in the sample, it manages to present superior prop-
erties in finite samples, comparable or superior to simulation based methods such as MCMC,
efficient method of moments, or minimum Hellinger distance (Takada (2009)).

Furthermore, the proposed estimators also address the problem of lack of robustness in
the presence of outliers. Two sub-classes of estimators studied (the Exponential Tilting (ET)
estimator (Imbens et al. (1998), Kitamura and Stutzer (1997)) and the Exponentially Tilted
Empirical Likelihood (ETEL) estimator (Schennach (2007)) have properties of robustness in
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the presence of incorrect specification problems, and these properties appear to be impor-
tant in the presence of outliers contaminating the data and in the presence of heavy-tailed
distributions in the innovations of the mean and of the process volatility.

This study’s analysis methodology is based on Monte Carlo studies for the verification of the
properties of the proposed estimators. In order to obtain compatibility in the results obtained,
we followed the same designs of Monte Carlo experiments used in the studies by Jacquier
et al. (1994), Andersen and Sorensen (1996) and Takada (2009), which facilitates a direct
comparison of the results. The Monte Carlo experiments are based on the specifications by
Taylor (1986)’s log-normal SV model used in those studies. The simulated series are estimated
by methods employing estimators of generalized empirical likelihood, ET and ETEL, as well
as the smoothed moments’ versions of these models. As reference criterion we will also use the
estimation by generalized method of moments, employing two-stage, iterated and continuous
updating versions. This benchmarking is useful because the moment conditions are the same.

The objective of these analyses is to verify the properties of the estimators proposed in
relation to the size of the sample used, the set of moment conditions, and in relation to
the robustness in the presence of heavy-tailed processes of innovation and outliers. To this
end, we undertook three classes of experiments. In the first class, we analyzed the effect of
sample size and of the set of instruments, analyzing the estimation with sample sizes of 250,
500 and 1,000 observations, using sets of 24 and 14 moment conditions, following Andersen
and Sorensen (1996)’s study. In the second class, we verified the estimators’ properties in
the presence of heavy-tailed innovation processes, and for this we employed two experiment
configurations. The first configuration uses a Student t distribution with 4 degrees of freedom
as innovation process of the mean; and in the second configuration, we used the same Student
t distribution with 4 degrees of freedom, but now as innovation process in the equation that
describes the process volatility. The last class of experiments verifies the effect of the outliers
on the estimation, and once again, with two kinds of experiments. The first experiment verifies
the effects of an outlier on the mean equation (Level Outlier as named by Hotta and Tsay
(1998); and the second experiment verifies the effect of an outlier on the volatility equation
(Volatility Outlier according to Hotta and Tsay (1998)).

This study is structured as follows: in section 2 we briefly revise the log-normal SV model
employed; in section 3, we revise the use of moment conditions in the estimation of SV models;
in section 4, we present the estimation methods based on empirical likelihood and generalized
minimum contrast; section 5 shows Monte Carlo experiments; and the final conclusions are in
section 6.

2. LOG-NORMAL STOCHASTIC VOLATILITY MODEL

The so-called log-normal volatility model introduced by Taylor (1986) can be described by
the following structure:

(1) Yt = O4€¢,

(2) logo? = o+ Blogo? | + ouy,

where the equation 1 describes the behavior of the process mean, and equation 2 contains
the volatility dynamics. It is usually assumed that the innovation processes in the mean and in
volatility are given by independent normal distributions, that is, (¢, u;) ~ #4dN (0, I2) and in
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this model the parameter vector is given by 6 = («, 3, o). Note that it is possible to interpret
this model in a semi-parametric form, as pointed out by Renault (2009), without an a priori
specification of the innovation process distributions. Renault (2009) denotes this model as
Exponential - SARV because the variance exponential is an autoregressive process.

As demonstrated by Francq and Zakoian (2006), it is not necessary to assume a distribution
for this model’s estimation, since, as previously noted by Ruiz (1994), logy? = logo?_; +loge?,
and this corresponds to an ARMA model (1,1) for the log of the square of the observed process
Y, which makes it possible to derive the representation employed by Francq and Zakoian
(2006) to obtain a consistent estimator by least squares for this model. Francq and Zakoian
(2006) also demonstrate that there is an ARMA (m,m) model for any logy]" potency of this
process, although it is important to note that the log-normal representation is quite realistic,
as indicated by Andersen (1994).

This log-normal specification makes it possible to construct moment conditions of any order,
as demonstrated by Taylor (1986) and Melino and Turnbull (1990). The moment conditions
of the log-normal SV model can be obtained by initially defining the unconditional mean and
variance of the logarithm of the variance:

2

g
1- 3%

MZE[IOthZ]Z ,o. =Var [logaf]:

and the remaining moments as:

E ny’” =2y/2/7E [O’?] ,
E [yﬂ =3F [Uﬂ ,
Elysyr—;51] = (2/7) E oo,

2,2 2 2
Elyiyi—j] = B [oioi ]
Moments of superior order can be written out as:

2,2
Elo)] = exp <% + %)

for any positive integer j and constants r and s, and in the same way covariances can be
obtained by:

) 2
E[olo5 ] = B0} E[of] cap <“53(’ ) .

4

The moment conditions employed by Andersen and Sorensen (1996) and in our study com-
prise a set of 24 moment conditions using absolute moments of second to fourth order and
lags of first to tenth orders:
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(3) 9t 0) = (vl v Wil vl [veye—1ls oo [yeye—10l VP Y710 s Y2 YE-10)

We also employed a second vector of moment conditions with 14 moment conditions given
by:

(4)
gtl,lgl/t (0) = (\yt\,yf, |Z/§\,yf, lYeye—al, [Yeye—al, |yeye—sl, |ytyt—8|\ytyt—10\,y?yf_pyfyf_g,y?yf_ts»yfyf—wyfyf—g)

With these two vectors of moment conditions we can perform the estimation using the
generalized method of moments defined in section 3 and the generalized empirical likelihood
and generalized minimum contrast methods in section 4.

3. ESTIMATION OF STOCHASTIC VOLATILITY MODELS USING THE METHOD OF MOMENTS

The estimation by Hansen (1982)’s generalized method of moments is performed by making
the sample moments equal to the population moments , which is equivalent to equalizing the
moment conditions vector g(#,Y;) to zero in the form:

T

(5) g(0,y) = % > 9(0,u) =0.
t=1

This system is generally over-identified (there are more moment conditions than param-
eters), and so in general there are no solutions. In order to obtain a solution, a criterion
function must be employed:

(6) J(O) =70, 5) Wg (0, )

and an optimal solution is defined as the minimization of J(6), with W being a positive
definite weighting matrix. The fundamental result obtained by Hansen (1982) is to demon-
strate that the asymptotically efficient solution of the estimation is obtained when this matrix
is given by:

(7) W* = {tlir& Var (\/Tm(e)) }71 = Q(0).

where Q(6) denotes the variance-covariance matrix of the model’s parameters. In this
way, the asymptotically efficient weight is obtained by employing the inverse of the variance-
covariance parameter matrix. This matrix is generally unknown, and is usually estimated
using the HAC class of estimators by Newey and West (1987):

(8) O= 3 k(s)lu07),

where k denotes a kernel function in relation to a certain parameter of bandwidth h, chosen
by means of Newey and West (1987) or Andrews (1991)’s procedures:
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T
- * 1 * *
(9) Lo(07) = 7 2_ 900", 9)9(0" yess)'
t=1
The efficient estimator of the generalized method of moments is then obtained as a solution
to the problem:

(10) 6= argming (0,5)' 2.(0)7 (0,91)

There are several forms to carry out the implementation of the GMM estimator. The initial
form proposed by Hansen (1982) is the estimator known as two-stage GMM. This estimator
is obtained by performing a first stage, finding an initial 0 = argming (A) Qg () estimator,
where () is an initial weighting matrix, usually an identity matrix. Following from this first
stage, a HAC matrix Q (6*) is calculated in function of that initial estimation, and the final
estimation of the GMM estimator is obtained as § = argming (6)' Q (§*) g (6) with the HAC
matrix that was obtained in the first stage.

A point to be noted is that, in this case, the second stage results depend on the initial
estimation in the first stage, and thus this procedure can create a first order bias, weakening
the estimator’s performance in finite samples (Hansen et al. (1996)). In order to solve this
problem, two alternative procedures were proposed. The first procedure is known as iterative
GMM, in which the first stage estimation is reinitialized with the result of the second stage
estimation, and this iteration continues until the variation in the parameter vector or in the
criterion function becomes smaller than an established tolerance.

Another possible estimator is known as GMM with continuous updating (Hansen et al.
(1996)). In this case, the estimation of the parameter § is not performed in stages, but rather
by simultaneously employing a numeric optimization algorithm. Starting from an initial vec-
tor 6y (usually chosen by employing a two-stage GMM method), the estimation is performed
by 6 = argming 9) Q (0*)g (0), but now 6 and Q (0*) are simultaneously determined by the
numeric optimization procedure. This procedure obtains the same first order properties of the
iterative GMM estimator, but, according to Hansen et al. (1996), it has better properties in
terms of bias in finite samples, and this estimator is invariant under model reparameterization.
According to Newey and Smith (2004) and Anatolyev (2005), the three methods are asymp-
totically equivalent, but the second order bias in finite samples of the continuous updating
estimator is smaller. However, the numeric procedure may be subject to multiple modes in
the objective function, which renders this estimator numerically unstable.

The estimation of the SV model by GMM is performed by employing the moment condi-
tions defined by the vector given by Eq. 3. There are, however, some specific points in the
estimation of SV. As discussed in Melino and Turnbull (1990) and Hall (2005), the numerical
procedure in this problem becomes more difficult due to the presence of non-differentiable
moment conditions by using absolute moments. Although these functions are differentiable at
almost all the points and the use of absolute moments does not affect the asymptotic prop-
erties of the estimators (e.g. Hall (2005)), it is important to discuss how to deal with this
problem. Melino and Turnbull (1990) assume that the value of the function is 0 at the non-
differentiable points, but this procedure can be problematic because it leads to a discontinuity
in the determination of the step size in the numeric optimization algorithm. An alternative
form consists in performing a procedure of numerical interpolation at the non-differentiability



ESTIMATION OF STOCHASTIC VOLATILITY MODELS USING GEL/GMC 8

point, which is the procedure carried out in this study. The properties of this approximation
can be seen in Hall (2005).

Properties of the GMM estimator in the estimation of SV models can be found in Andersen
and Sorensen (1996)’s study, and a complete revision of the use of methods of moments, in-
cluding the use of simulated methods of moments, can be found in Renault (2009). The results
demonstrate that this estimator, despite being computationally simple, has poor properties
in finite samples due to bias and inefficiency problems, although the results are better that
those obtained by the quasi-maximum likelihood estimator (e. g. Jacquier et al. (1994)). The
problem in finite samples of the GMM estimator is related to the need to use a large number
of moments to secure the estimator’s efficiency, but the bias of the GMM estimator in finite
samples is proportional to the number of moment conditions used. Thus, in finite samples
there is a trade-off between bias and efficiency. Note that, although the principal advantage of
the GMM estimator lies in its semi-parametric formulation, which does not require assump-
tions about the sample distribution, the estimator employs only the moments of the process,
and it does not employ all the information contained in the sample.

In Andersen and Sorensen (1996)’s article, several details are discussed in the specification
of the GMM estimator for SV models, such as the choice of the Kernel function and the
bandwidth employed, convergence problems and other subgroups of moment conditions. In
this study we employ the quadratic spectral function as kernel function, with the optimum
bandwidth chosen by Andrews (1991)’s procedure.

4. GENERALIZED EMPIRICAL LIKELIHOOD AND GENERALIZED MINIMUM CONTRAST
ESTIMATORS.

The GMM is a method particularly useful in estimating non-linear models when the mo-
ments are known. However there is a trade-off between, on the one hand, the weaker need of
assumptions for its use, and, on the other, the method’s efficiency in finite samples, as dis-
cussed in the previous section. The regularity conditions for GMM estimators (Hansen (1982),
Newey and McFadden (1994), Hall (2005)) involve only conditions for the asymptotic validity
of the moment conditions, and they do not assume stronger conditions such as the knowledge
of process distribution, which represents an underutilization of the information presented in
the sample.

The opposite situation would be the estimation by the method of maximum likelihood,
which uses not only the conditional moments of the process but also all the information
present in the conditional densities. If the process is correctly specified and meets the regular-
ity conditions, it is the best asymptotically Gaussian estimator, besides reaching optimality
in measures such as Badahur efficiency (Kitamura (2006), DasGupta (2008)). Note that the
estimation by maximum likelihood in the context of the estimation of SV models is more
complex because the volatility is a latent variable, and the evaluation of the exact likelihood
function usually requires simulation methods such as importance sampling or MCMC. Ap-
proximations using the quasi-maximum likelihood principle represent a cost in terms of their
inferior performance in finite samples.

In this context, an alternative form of formulating estimators that do not need the paramet-
ric specification of the process distribution consists in employing semi-parametric estimation
methods based on a non-parametric estimation of the likelihood function of the process. These
semi-parametric estimators are known as Empirical Likelihood (EL) methods, formulated as
generalizations of the non-parametric likelihood methods by Kiefer and Wolfowitz (1956).
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According to Kitamura (2006)’s presentation, the non-parametric log-likelihood function of
a sequence of IID data {y;};—; of unknown density is defined as:

(11) ENP(plv"'apn):ZIngiv (plv"'vpn)eA7
=1

defining A as the simplex {(p1,...,pn) : > i pi=1,0<p; <1,i=1,...n}.

This definition is equivalent to addressing each point of the sample as originating from
a multinomial distribution with the support given by the sample {y;};" ; observations, even
though the y; density is not multinomial. As this formulation does not involve any model and
does not contain the model’s parametric structure, it is somehow nonrestrictive when employed
in inference problems involving a parametric part with a finite number of parameters. The
semi-parametric specification of this process was obtained by Owen (1991), who established
the concept of empirical likelihood.

This formulation is important because it allows connections between the non-parametric
estimation of the likelihood function and the estimation using moment conditions, formulated
with the estimation equation and M-estimators principle - as shown by Qin and Lawless (1994),
and these estimation equations can be formulated by using moment conditions in the same
way as GMM estimators.

Assuming moment conditions given by:

(12) Elg(0,Y)] = / 9(6.y)dpy (y) = 0,6 € © C RF,

where py is the distribution of the random variable Y, the estimation problem using moment
conditions can be transformed into a non-parametric likelihood estimation, by the construction
of implicit probabilities p;, and thus the log-likelihood function to be maximized becomes:

n n
(13) (nNp(P1y- - pn) = Y logpi, sit. Y g(0,yi)pi =0
=1 =1

The value that maximizes this expression is the maximum empirical likelihood estimative
and it maximizes the empirical likelihood function of the process and simultaneously imposes
the validity of the moment conditions. These implicit probabilities give more weight to obser-
vations where the moment conditions are closer to zero, and less weight to other observations.
Note that the generalized method of moments can be obtained as a particular case assuming
all weights to be p; = 1/n.

This empirical likelihood formulation is particularly useful in the estimation of models
with latent variables where there is no way of evaluating the exact likelihood function of the
process. Whereas it is not necessary, when dealing with the GMM estimator, to assume the
knowledge of the process likelihood, in the estimators of empirical likelihood the information
of the process distribution is used in the estimation by means of its non-parametric estimation.
This construction makes it possible to obtain efficiency properties in the semi-parametric sense
defined by Bickel et al. (1993).

Note that, when the sample is not an IID process, as time series data present in models
of stochastic volatility and denoted by the index of time t, it is necessary to modify the
treatment given to the moment conditions. In this situation, the method is modified assuming
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that the moment conditions originate from a process that is weakly dependent and possibly
heterokedastic. Anatolyev (2005) proposes to substitute g(6, y;) for a smoothed version defined
as:

m
(14) g°O,u) = Y w(s)g(0,yis),
S=—m
where w(s) are weights obtained by a kernel function adding one, in the spirit of a HAC
estimator (Andrews (1991)). This modification makes it possible to obtain the same conditions
of first order asymptotic efficiency present in the GMM methods. The moment conditions are
then as follows:

T
(15) > g (0,y) = 0.
t=1

The GMM estimators is generally defined by the minimization of the quadratic form 10, and
in in the overidentified case not all the moment conditions are necessarily equal to zero at the
estimated parameter value. In the empirical likelihood estimators formulated by the moment
conditions, these conditions are set exactly equal to zero using the ponderation given by the
empirical probabilities p;. Note that in models exactly identified, all the proposed estimators
obtain similar results, because in all these estimators the moment conditions are always valid.
An important result is that in overidentified models with valid moment conditions all these
estimators obtain the same asymptotic variance (e.g. Kitamura (2006)).

It is possible to formulate these empirical likelihood estimators as particular cases of the
semi-parametric class of estimators based on the minimization of distances, or, as defined by
Bickel et al. (1993), estimators of generalized minimum contrast (GMC)2. This formulation
makes it possible to obtain the properties of semi-parametric efficiency in this class of estima-
tors. Note that we can also draw a parallel with the interpretation of the GMM estimator as
an estimator of minimum x?, or the interpretation of quasi-maximum likelihood estimators as
estimators of minimum contrast (White (1982)).

In order to show this alternative interpretation of empirical likelihood estimators, we start
by defining a general divergence function D(P, Q) between two probability measures P and

Q as:

(16) D)= [ ¢ (%) 10,

where ¢ is a convex function. This is an important condition because it allows us to define
the conditions of regularity in the process, e.g. Bickel et al. (1993). Define M as the set of
all probability measures in RP and P, the statistic model defined by measures of probability
compatible with 17:

(17) P(0) = {P €M : /g(e,y)dp = o}

2See Bickel et al. (1993), cap 7, for a general discussion of conditions of regularity, existence and efficiency
of generalized minimum contrast estimators.
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The estimator of generalized minimum contrast is defined as a solution of:

a 2L i, DU

where i denote the dominating measure in this model. Thus, in a correctly specified model,
this discrepancy must be the unique, and minimum in 6 = 6.

In order to establish the connection with empirical likelihood estimators defined by equation
15 and the minimum contrast estimators by means of implicit probabilities, it should be noted
that the minimum contrast estimators can be formulated as a problem in the form of moment
conditions E(g(#,y:)) = 0, turning the minimum contrast estimators into a function of these
probabilities, using contrast function hr:

T
1 0, — i h .
(19) argrgl;?; 7(pt)

In the case of empirical likelihood estimators, the point estimate 9 is the value which
minimizes the discrepancy between p; and uniform weights. An important result is that an
adequate choice of the discrepancy function can lead to a unified representation of empirical
likelihood and minimum contrast estimators. This representation can be obtained when the
function hr(p;) belongs to the Cressie-Read family of discrepancies given by:

(20) pr(p) = 107 1)]1:(ert)V+1 -

which encompasses cases of several classes of estimators. Empirical likelihood is obtained
with the restriction v — 0 in the discrepancy function hp(p;); the method of generalized
minimum contrast, known as ET of Kitamura and Stutzer (1997) and Imbens et al. (1998), is
obtained with v — —1; and the continuous updating estimator using the empirical likelihood
formulation is obtained with v — 1.

Note that the problem of estimation involves obtaining estimators not only for the implicit
probabilities but also for the parameters of the parametric part of the model, which is, in
principle, a high dimension optimization problem. Smith (2001) demonstrated that it is
possible to define another estimator that also has these estimators as particular cases, and
that makes possible a dual formulation of inferior dimension.

The Smith (2001) Generalized Empirical Likelihood (GEL) estimate is obtained as a solution
for the following saddlepoint problem:

T
n . 1 ! w
(21) 6 = argmin | max — ;1 p(Ng“(0,0)) |

where A\ defines Lagrange multipliers imposing a restriction:

T
(22) > peg”(O.m) =0.
t=1

Estimators are obtained by solving the previous equation with the first-order condition:



ESTIMATION OF STOCHASTIC VOLATILITY MODELS USING GEL/GMC 12

T w
P 00
with:
1
(24) pt= TP' (Ng“(0,u)) -

This generalized likelihood estimator contains the empirical likelihood estimator, assuming
the same conditions of the Cressie-Read divergence function over =, through modifications of
functions h and p. The EL estimator is obtained by h(p) = —Iinnp and p(§) = In(1 — &); the
ET estimator by (Kitamura and Stutzer (1997) , Imbens et al. (1998)) with h(p) = nplnnp
and p(¢) = —exp(€); and the continuous updating estimator as h(p) = (np)? and p(¢) =
—(1+¢)%/2%

An additional class of estimators which do not belong directly to the class of EL or minimum
contrast estimators, but which is obtained by combining the empirical likelihood estimator
and the ET estimator, is the ETEL estimator proposed by Schennach (2007). This estimator
is defined as:

)

(25) = argmin <n Zmpt(e))) ,

i=1
where g;(0) is the solution of:

{9itica

subject to Y i pg(f,y) = 0 and > pr = 1, with h(p1) = —In(npy) and h(p;) =
npdn(npy).

Note that the ETEL estimator employs the ET method to find the probabilities p;(6), and
the EL method to estimate the parameter vector f. These probabilities are related to the
multipliers A by the relation:

(26) min n~! Z h(p¢)
i=1

(R@y9(6, 1)
i (M6Yg(6.v0)

An important property of the estimators of ETEL class is their behavior in the presence of
incorrect specification. Imbens et al. (1998) point out that the EL estimator can display inad-
equate behavior in the presence of incorrect specification due to the presence of a singularity in
its influence function, and, according to theorem 1 in Smith (2001), the asymptotic properties
of the EL estimator can be severely weakened in the presence of minimum specification prob-
lems. This also affects the estimations of the implicit probabilities, because, in the presence
of specification problems, the implicit probabilities in likelihood problems tend to concentrate
on the extreme observations, in opposition to what is expected in a robust estimator in Huber

(27) pi(0) =

3See Table 1 Smith (2001) for more details.
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(1981) and Hampel et al. (1986)’s sense, which should minimize the importance of extreme
observations in the construction of an estimator.

We will now summarize some common properties of the estimators discussed in this study.
The first property is that all the estimators employed (two-stage GMM, iterative GMM, GMM
continuous updating, GEL, ET, and ETEL) have the same properties of consistency and first
order asymptotic efficiency (e.g. Smith (2001), Schennach (2007)), and in the validity of
moment conditions all the estimators have the same asymptotic variance. However, their
performance in finite samples can be quite different. The two-stage GMM estimator can be
severely biased in sample sizes employed in economics and finance, and continuous updating
estimators are numerically unstable due to the presence of multiple modes in the objective
function (e.g. Hansen et al. (1996)). Another interesting property is that estimators based on
GMC and GEL are invariant to linear transformations in the vector of moment conditions,
which does not occur in the two-stage GMM estimator. Estimators based on generalized
empirical likelihood /minimum contrast are efficient in the semi-parametric sense of Bickel
et al. (1993), and have superior properties in terms of higher order asymptotic bias. These
estimators also present optimum properties in terms of hypotheses testing. As demonstrated
by Kitamura (2006), these tests are optimum in the minimax and large deviations criteria,
and are uniformly more powerful in the generalized sense of Neyman-Pearson.

A fundamental point is that in the EL and minimum contrast estimators based on the
Cressie-Read discrepancy, the bias in finite samples does not grow with the number of moment
conditions used. This property makes it possible for the efficiency of the estimators to be
obtained with the use of a high number of moment conditions, without implying an increase
in the bias in the finite samples as occurs in the use of the GMM estimator, which leads to
the problem of the inferior performance of this method in comparison with other forms of
estimation.

The result obtained by Smith (2001) is that in the class of minimum contrast/empirical like-
lihood estimators, the only estimator with adequate behavior in the presence of specification
problems is the ET estimator, because its influence function does not present singularities. The
ETEL estimator is a combination of the EL estimator and the EL estimator, and it maintains
the EL estimator’s characteristics of asymptotic efficiency and minimum bias. Additionally,
it inherits the robustness in the presence of specification problems, due to the use of the
ET estimator to estimate implicit probabilities, as demonstrated by theorems 8-10 in Smith
(2001), who proves that this estimator is \/n convergent even in the presence of specification
problems.

Estimators for the parameters of the parametric part of the model and for the implicit
probabilities can be obtained by numeric optimization or via quasi-Newton iterative methods.
These methods can be formulated in a problem of smaller dimension using a dual formulation
(Kitamura (2006)) through the numeric optimization employing Lagrange multipliers defined
by equations 21 and 27, which is the general form used in this study.

Note that in the estimation of SV models we are subject to the same problem of using non-
differentiable moment conditions due to the use of absolute moments. This problem impedes
the simple use of iterative methods for the estimation of Lagrange multipliers proposed by
Kitamura (2006), and thus, in these cases, we need to use the same techniques of numeric
optimization with the interpolation in the vicinity of the discontinuity points discussed in the
estimation by GMM.
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5. MONTE CARLO STUDIES

The performance of the proposed estimators is analyzed through a series of Monte Carlo
studies, with the purpose of verifying the performance of each estimator in different parameter
configurations, sample sizes, moment conditions employed, and robustness in the presence of
specification problems and outliers. In order to analyze these problems, we worked with three
parameter configurations for each experiment performed. These configurations follow the
same configurations employed in the articles by Jacquier et al. (1994), Andersen and Sorensen
(1996) and Takada (2009). The set of simulated models correspond to the parameters (o, 3, o)
given by (-0.736, .9, .3629), (-0.368, .95, .26) and (-.1472, .98, .1657). This choice is justified
in the study by Jacquier et al. (1994) where these configurations are considered as generating
the same unconditional variance but with distinct persistence configurations.

In the first analysis, we performed the estimation of the reference models (Gaussian inno-
vations in the mean and volatility equations and without outlier) using the estimators defined
previously. For each parameter vector we carried out 1,000 replications. The sample size will
be equal to 500 in all cases except in the analysis of the sample size effects. Each simulated
series was estimated by the following methods: two-stage GMM (GMM2S), Iterative GMM
(GMMITER), GMM Continuous Updating (GMMCUE), GEL, ET and ETEL, as well as the
versions with smoothed moments of these three last estimators (SGEL, SET and SETEL).

Tables 1, 2 and 3 show the estimation results of these reference models with three parameter
configuration; each table presenting the mean, the bias, mean squared error (MSE), and mean
absolute error (MAE) of each parameter estimator. In order to ease the visualization of the
results, we shown in Figure 1 the MSE and MAE of each estimator for each parameter. In
terms of mean quadratic error and mean absolute error generally the estimators based on
EL and GMC are much superior to those obtained by estimators based on GMM, and this
superiority is valid for all the three parameters estimated in all parameter configurations.
This result gives support to the use of these methods as competitive methodologies in the
estimation of SV models.

Although the straight comparison in this article is performed with estimators using the
same moment conditions, due to the use of the same parameter configuration of other studies,
it is possible to compare the results obtained with other estimation methodologies. The results
obtained are directly comparable with those analyzed in Takada (2009)’s article, who proposed
an estimator for SV models employing simulated Minimum Hellinger Distances, comparing
this method with other methodologies, such as the efficient method of moments (EMM),
MCMC, and maximum likelihood Monte Carlo.

Table 1 in Takada (2009) shows the results for these estimators’” MSE for the first parameter
vector studied, for a sample of size 500. The results of a direct comparison with the results
presented in this table indicate that the estimators based on GEL/GMC are superior to
the following methods in terms of MSE: SMHD (Simulated Minimum Hellinger Distance),
EMM (Efficient Method of Moments) and MCMC. They also have a superior or equivalent
performance to the MCML (Monte Carlo Maximum Likelihood) estimators by the criterion
of mean quadratic error. In comparison with the results of that article, we notice that the
results of all the estimators based on GEL/GMC are superior to all these methods, except for
the estimation of o where the estimators obtain a mean quadratic error equal to the MCML
estimator.

In this comparison it is important to notice that the GEL/GMC estimators do not require
Monte Carlo simulation procedure, and are computationally simpler than these methods,
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indicating that the use of EL and MC makes it possible to obtain superior properties in finite
samples when compared with the methods so far considered as the most efficient in the SV
model estimation, with a noticeably smaller computational and implementation cost.

5.1. Effect of Sample Size and Set of Instruments. In order to verify the effect of the
sample size in the estimators’ performance, we carried out an analysis with the estimation of
the parameter vectors studied with samples of size 250 (Tables 4, 5 and 6) and 1,000 (Tables
7, 8 and 9) and employing the 24 moment conditions defined by equation 3. As expected,
the increase in the sample size decreases the MSE and MAE of all the estimators, but with
different effects for each parameter configuration of and estimation method. Summarizing
these results, we show in Figure 2 the relative efficiency, defined as a ratio between the MSE
of the sample of size 250 and the MSE of sample size 1,000 for each configuration.

Except for the GEL estimator in parameter configuration 2, with efficience rate inferior to
one, there is a real gain in terms of MSE for all the parameters. This particular result for
the GEL estimator in this configuration can be explained by the greater convergence difficulty
noted in this particular configuration, but it is important to note that, in the version with
smoothed moments, this estimator behaves as expected.

As can be seen in Figure 2, the sample size has heterogeneous effects for each estimator, de-
pending on the parameter configuration. The estimators based on GEL/GMC with smoothed
moments have greater gain in the configuration with smaller persistence while those based
on GMM behave in the opposite way. This result can be interpreted by the fact that the
smoothing of moments is more efficient when the volatility persistence is smaller.

As previously discussed, the main theoretical motivation for the use of estimators based on
GEL/GMC lies in the possibility of using a larger number of moment conditions to achieve a
more efficient estimation, since the finite samples bias in these methods does not grow with
the number of moment conditions, as occurs with GMM estimators. In order to verify this
property, we employ a new estimation with a subset of the moment conditions vector, now
working with 14 moment conditions only, according to Eq. 4, instead of the original 24 moment
conditions given by Eq. 3.

The results of this comparison are displayed in Tables 10, 11 and 12, and the comparisons
between estimators employing MSE and MAE with the use of 14 moment conditions are placed
in Figure 3. We can note that in this configuration the GEL/GMC estimators still display a
superior performance in comparison with those based on GMM, but now this performance is
not as superior as in the configuration with 24 moment conditions, which gives support to the
conjecture of a superior use of the moment conditions in terms of bias and variance for the
estimators of GEL/GMC class.

Figure 4 presents the relative efficiency between MSE using 14 moments and the estimator
with 24 moments. For the GMM estimators the efficiency presents modest increases or reduc-
tions increasing the number of instruments, similarly to the results obtained in the studies
by Andersen and Sorensen (1996). However there are, in general, very significant efficiency
gains in MSE for the estimators based on GEL/GMC, reaching values over 200 times in the
second parameter configuration. Nevertheless, for the third parameter configuration, we can
observe that the estimation with a number of moment conditions represents a reduction in
the relative efficiency of all the methods for the estimators of v and .

5.2. Student-t Distribution (4) in the mean innovations. As previously discussed, al-
though the SV log-normal model is defined by moments of a log-normal distribution, it can
be interpreted in a semi-parametric form as an autoregressive model for the exponential of
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the volatility process, without the need for a distribution specification for the innovation pro-
cesses (e.g. Francq and Zakoian (2006), Renault (2009)). However, as we are employing these
theoretical moments assuming the distribution specification of innovations in the construction
of the moment conditions, it is important to verify whether alternative specifications signifi-
cantly alter the properties of the estimators in finite samples. It is particularly interesting to
verify if, consistently with what is observed for financial series, heavy-tailed processes affect
these estimators.

The first analysis undertaken was to replace the standard Gaussian distribution in the
innovations of the mean process for a Student-t distribution with 4 degrees of freedom. This
choice was purposely made with the aim of verifying the effect of a distribution with heavier
tails on the estimation of SV models. Note that, as we are employing higher moments, the
heavy-tail effect can be magnified in the estimation, since now each observation is raised to
potencies of second, third and fourth orders. We particularly use this number of 4 degrees
of freedom in Student-t to have a distribution with non-finite kurtosis and, consequently, to
have a robustness test under extreme conditions.

Tables 13, 14 and 15 show the results of this experiment using 24 moment conditions and
Tables 16, 17 and 18, using 14 moment conditions. It can be seen that in this situation the
estimators based on GMC/GEL clearly maintain their dominance over the estimators based
on GMM, as it becomes more evident in Figures 5 and 6, which show MSE and MAE of each
estimator, and once again we have the same result of best performance in this situation of the
GEL/GMC-based estimators.

In order to verify whether in this case it is still advantageous to work with a larger set
of instruments Figure 7 shows the ratio of the MSEs between the estimators with 14 and 24
moment conditions. The results show that in this situation the increase in the number of
instruments can impair the performance of the estimators, and this effect occurs both for the
GMM estimators and for the GEL/GMC estimators, although the effect is heterogeneous in
terms of the configuration and of the parameter analyzed. In the situation of lower persis-
tence, it is advantageous to work with the larger number of instruments for the GEL/GMC
estimators, but this result is not maintained in the other parameter configurations, and par-
ticularly in the configuration with high persistence, the use of the larger set of instruments
causes almost a general degradation in the performance of all the methods.

5.3. Student-t Distribution (4) in the volatility innovations. In the next experiment,
we modified the data generating process, assuming now that the innovation process in the
volatility equation is given by a Student-t process with 4 degrees of freedom, assuming in this
case the usual supposition of Gaussian innovations in the mean equation. Note that, in this
configuration, the effects are expected to be more harmful, since now the effect of heavier tails
is directly spread by the volatility equation’s autoregressive structure, unlike the previous case
where the heavy-tailed innovations affected the mean equation, which was a process without
correlation.

Tables 19, 20 and 21 show the results obtained with 24 moment conditions, and Tables 22,
23 and 24 show the results obtained with 14 moment conditions. These results are summa-
rized in Figures 8 and 9. We note that these heavier tailed innovations effectively damage the
performance of the GMM-based estimators, and moderately damage the GEL-based estima-
tors. In this experiment, the robustness properties of the methods based on ET and ETEL
become evident, and these methods generally have a superior performance in comparison with
the other methods. For example, the ratio between MSE for a estimated by Iterative GMM
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and by the smoothed ETEL method has a value of 5102.984 for the first parameter configura-
tion, showing the dominance of these methods in this situation of incorrect specification. As
previously discussed, this robustness property is derived from the bounded influence function
of the estimators based on ET, and it proves to be quite important in this situation. As
financial data is characterized by heavy tails, we have an additional justification for the use
of the estimators proposed in this study.

Likewise, we can verify the effects of using a number of moment conditions in this con-
figuration. Figure 10 shows the relative efficiency effects of the estimators obtained with the
increase in the number of instruments from 14 to 24. However, in this configuration, we have
mixed results because for the first parameter configuration there is a general gain in the esti-
mators - though more noticeable for the estimators based on GEL/GMC -, but for the other
configurations there are losses, particularly in the estimation of the volatility parameter ¢ in
the second configuration.

5.4. Experiment 4 - Level Outlier. In order to verify the effects of aberrant observations
(outliers) in the process of stochastic estimation, we undertook two classes of experiments. In
this part of our study we will verify the effect of the so-called level outliers (in Hotta and Tsay
(1998)’s nomenclature) in the estimation of SV models. In this experiment the generating
process is given by:

(28) yr = orer + LO;

(29) logo} = o+ Bloga?l | + ouy,

where LO; is a binary variable with positive value of 5 standard deviations of the process
if the observation is carried out in the period t=251, and zero in the other observations. Note
that in this experiment the outlier do not affect the persistence in the volatility process. The
results of this experiment are displayed in Tables 25, 26 and 27 for the set of 24 moments;
and in Tables 28, 29 and 30 for the set of 14 moments; and the results of MSE and MAE are
summarized in Figures 11 and 12. We observe a better performance of the estimators based on
GEL/GMC, particularly those employing the ET method for the calculation of the Lagrange
multipliers. For example, the ratio of 260.8 between the MSE of the GMM Iterative estimator
and the smoothed ET estimator of a in the parameter configuration 3 supports the evidence
that the robustness properties of this class of estimators have advantages in the estimation of
SV models. The performance of these estimators is more noticeable in the situation of longer
volatility persistence, given by parameter vector 3.

It is not possible, however, to identify a clear effect of the number of moment conditions
in this experiment, since the effects are similar to those occurred in the previous experiments
with heavy-tailed innovations. As per Figure 13, the relative efficiency between 14 and 24
moment conditions, for parameter vectors 2 and 3 indicates that the increased number of
instruments represent a loss in performance in most cases, particularly for the estimation of
parameter o.

5.5. Experiment 5 - Volatility Outlier. In the last specification tested, we verified the
effect of a so-called volatility outlier (as named by Hotta and Tsay (1998)) in the estimation.
In this experiment, the data generating process is given by:
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(30) Yt = OtEt

(31) logo? = o+ Blogo? | + ouy + VO,

where V' Oy is a binary variable with positive value of 5 standard deviations in observation
251 of the volatility equation and zero in the other observations. In this situation, there is
a direct propagation of the effects of the outlier in the volatility because now the effect is
directly transmitted by the autoregressive structure in the volatility equation, whereas the
effect was indirect in the case of a level outlier.

Tables 31, 32 and 33 (estimation with 24 moments) and 34, 35 and 36 (estimation with 14
moments) show the results of estimations which can be summarized by Figures 14 and 15 with
the MSE and MAE results. As per previous experiments, the GEL/GMC-based estimators
have in general a superior performance in comparison with the GMM-based methods, and
show that the same properties of robustness remain valid in this volatility outlier situation,
which would be potentially more serious for the estimation of volatility parameters.

The effect of the larger number of instruments in this situation can be seen in Figure 16,
which indicates that there is an efficiency gain with a higher number of instruments in the
situation with low persistence; however, for situations with higher volatility persistence, the
additional instruments generally present noticeable deterioration in the estimators’” MSE.

6. CONCLUSIONS

In this study we discussed the estimation of SV models using estimators based on gener-
alizations of the empirical likelihood and minimum contrast methods. The performance of
these estimators, as shown by a set of Monte Carlo experiments, proved to be superior to
the estimation methods based on generalized method of moments, and also superior to the
methods based on simulation such as MCMC and Monte Carlo maximum likelihood as studied
in Takada (2009).

The results obtained in this study are consistent with those obtained by other studies (e.g.
Newey and Smith (2004)), which demonstrate that alternative estimators based on moments,
formulated as GEL/GMC-based estimators, display superior performance, nullifying the bias
problems occurring in the usual GMM estimators. The proposed estimators manage to obtain
superior properties in finite samples by a better use of the informational content present in the
moment conditions, since the higher efficiency is obtained not only by means of weighting by
the estimators’ variance - as in the case of GMM estimators - but also by the non-parametric
estimation of the likelihood function of the process, as discussed in Antoine et al. (2007).
Another related property lies in the fact that the bias of these estimators does not grow with
the number of moment conditions, as happens in the case of GMM estimators. Thus, it is
possible to obtain efficiency properties by using an adequate number of moment conditions.
This characteristic can be particularly important in the estimation of multivariate SV models,
in which the number of moment conditions is proportional to the number of series studied.
As the estimation of multivariate SV models still represents a great computational challenge,
(e.g. Chib et al. (2009)), the estimation by methods based on empirical likelihood /minimum
contrast can be an efficient alternative to be explored.

These results are particularly interesting because the implementation of the methods dis-
cussed in this study is computationally simpler than the implementation of methods based on
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simulation, requiring just one specification of the moment conditions of stochastic volatility
processes. Although this study is based on the specification of the log-normal SV model, it is
important to note that this procedure can be generalized by using the methodology proposed
by Meddahi (2001), which makes possible the automatic generation of moment conditions for
processes that belong to the so-called SV-eigenfunctions family.

Another important characteristic is related to robustness properties and specification prob-
lems, particularly of the methods based on ET, which, due to properties in their influence
function, manage to be y/n consistent even in the presence of specification problems. This
property is particularly important in the presence of processes of heavy-tail innovations, as
verified in this study by the use of a Student-t distribution with non-finite kurtosis, or else in
the presence of level or volatility outliers.
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APPENDIX - TABLES

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean o -0.700191 -0.608924 -0.569311 -0.729763 -0.730008 -0.728858 -0.732023 -0.730267 -0.727510
bias « 0.035809 0.127076 0.166689 0.006237 0.005992 0.007142 0.003977 0.005733 0.008490
mse « 0.495912 0.827004 0.383436 0.000723 0.000105 0.000229 0.002954 0.000148 0.000431
mae « 0.494248 0.686760 0.466081 0.016242 0.007843 0.011289 0.014323 0.008779 0.011775
mean f3 0.905908 0.918369 0.923634 0.902438 0.901313 0.901860 0.901165 0.901239 0.901681
bias 8 0.005908 0.018369 0.023634 0.002438 0.001313 0.001860 0.001165 0.001239 0.001681
mse f3 0.008939 0.014804 0.006909 0.000019 0.000005 0.000009 0.000049 0.000007 0.000013
mae f3 0.066857 0.092551 0.063312 0.003243 0.001806 0.002431 0.002724 0.001962 0.002344
mean o 0.236795 0.158262 0.170565 0.386721 0.387840 0.380383 0.378491 0.383913 0.376488
bias ¢ -0.126105 -0.204638 -0.192335 0.023821 0.024940 0.017483 0.015591 0.021013 0.013588
mse o 0.039156 0.067792 0.053258 0.001503 0.001488 0.001911 0.002134 0.001700 0.002037
mae o 0.168891 0.234061 0.207049 0.031779 0.033321 0.035319 0.037523 0.035307 0.036788

TABLE 1. Reference SV Model Sample Size 500 - a=-0.736 5=.9 0=.3629, T=500

GMM2S __GMMITER _GMMCUE GEL ET ETEL SGEL SET _ SETEL
mean a -0.323798  -0.300172 _ -0.520061 -0.371048 -0.366947 -0.369468 -0.367388 -0.366799 -0.367850
bias & 0.044202 0.067828  -0.152061 -0.003048  0.001053 -0.001468  0.000612  0.001201  0.000150
mse o 0.209281 0.375829  0.034725  0.000468  0.000219  0.000250  0.000331  0.000225  0.000631
mae a  0.311453 0.394674  0.156372  0.012824  0.010469  0.011898  0.012324  0.011163  0.013191
mean f  0.956477 0.959678  0.930090  0.950147  0.950309  0.950104  0.950271  0.950331  0.950167
bias 8 0.006477 0.009678  -0.019910  0.000147  0.000309  0.000104  0.000271  0.000331  0.000167
mse #  0.003805 0.006868  0.000635  0.000008  0.000004  0.000005  0.000006  0.000004  0.000010
mae 8 0.042185 0.053324  0.020561  0.001767  0.001443  0.001708  0.001526  0.001395  0.001681
mean o 0.146227 0.098469  0.198858  0.265285  0.272920  0.262856  0.258772  0.269163  0.257539
bias o -0.113773  -0.161531  -0.061142  0.005285  0.012920  0.002856 -0.001228  0.009163 -0.002461
mse o 0.027740 0.040511  0.004846  0.001597  0.001578  0.001870  0.002119  0.001679  0.002234
mac o 0.142769 0182002 0.061584  0.031468  0.033283  0.034507  0.037988  0.034831  0.039488
TABLE 2. Reference SV Model Sample Size 500 - a=-0.368 5=.95 0=.26
GMM2S _GMMITER _GMMCUE GEL ET ETEL SGEL SET  SETEL
mean o -0.143610  -0.153037 _ -0.161124 -0.177110 -0.167514 -0.166558 -0.132551 -0.168109 -0.170785
bias @ -0.001410  -0.005837  -0.013924 -0.029910 -0.020314 -0.019358 -0.035351 -0.020909 -0.023585
mse o 0.122958 0.180502  0.007471  0.002719  0.000792  0.000865 0.004335  0.001014  0.002519
mae o 0.185981 0.222997  0.033918  0.031699  0.020929  0.020838  0.038433  0.021868  0.025349
mean f  0.980010 0.979486  0.979135  0.976228  0.977244  0.977427  0.975315  0.977149  0.976785
bias 4 0.000010  -0.000514  -0.000865 -0.003772 -0.002756 -0.002573 -0.004685 -0.002851 -0.003215
mse B 0.002228 0.003236  0.000131  0.000043  0.000017  0.000017  0.000073  0.000023  0.000048
mae 8 0.025133 0.030039  0.003657  0.004043  0.002837  0.002788  0.005116  0.002971  0.003441
mean o 0.078125 0.055286  0.148443  0.169463  0.170654  0.160767  0.167593  0.169098  0.160081
bias o -0.087575  -0.110414  -0.017257  0.003763  0.004954 -0.004933  0.001893  0.003398 -0.005619
mse o 0.016178 0.020346  0.001544  0.001591  0.001388  0.001523  0.001909  0.001439  0.001613
mae o 0.115562 0133223 0.017375  0.031635 _ 0.029684  0.030572  0.035919  0.029612  0.032264

TABLE 3. Reference SV Model Sample Size 500 - a-.1472 f=.98 0=.1657

Reference SV Model - Sample Size 500.
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GMM2S __GMMITER _GMMCUE GEL ET ETEL SGEL SET __ SETEL

mean & -0.845827  -0.840009  -0.672720 -0.736400 -0.728755 -0.727990 -0.730010 -0.729343 -0.726712
bias a -0.109827  -0.104909  0.063271 -0.000400  0.007245  0.008010  0.005981  0.006657  0.009288
mse o 0.944574 2522021 1.339914  0.004713  0.000205  0.000555  0.000448  0.000775  0.001030
mae o  0.568116 0.956395  0.602316  0.023396  0.010023  0.015524  0.013468  0.012361  0.016576
mean 8 0.887361 0.889161  0.910046  0.901653  0.901630  0.902274  0.901814  0.901582  0.902088
bias 8 -0.012639  -0.010839  0.010046  0.001653  0.001630  0.002274  0.001814  0.001582  0.002088
mse 8 0.016784 0.043542  0.023987  0.000080  0.000009  0.000016  0.000015  0.000020  0.000028
mae 8 0.076241 0127159  0.081218  0.004287  0.002298  0.003158  0.002857  0.002684  0.003380
mean o 0.255995 0139735  0.143907  0.383615  0.385449  0.377069  0.377577  0.383512  0.370742
bias ¢ -0.106905  -0.223165  -0.218993  0.020715  0.022549  0.014169  0.014677  0.020612  0.007842
mse o 0.042192 0.079458  0.067077  0.002284  0.001830  0.002593  0.002906  0.002043  0.003781
mae o 0.170713 0.256598  0.237429  0.037310  0.036526  0.040098  0.041506  0.038537  0.046534

TABLE 4. Reference SV Model Sample Size 250 - a=-0.736 5=.9 0=.3629

GMM2S _GMMITER _GMMCUE GEL ET ETEL SGEL SET __ SETEL

mean @ -0.453177  -0.510670  -0.582461 -0.369508 -0.365449 -0.367953 -0.367438 -0.365712 _-0.366300
bias a -0.085177  -0.142670  -0.214461 -0.001508  0.002551  0.000047  0.000562  0.002288  0.001700
mse o 0.472332 1.448096  0.080215  0.000396  0.000215  0.000345  0.001415  0.000261  0.001354
mae o 0.392820 0.621217 0219123  0.013576  0.010837  0.012862  0.016954  0.011440  0.016981
mean 8 0.939239 0.932243 0921192  0.950571  0.950596  0.950449  0.950410  0.950571  0.950487
bias 8 -0.010761  -0.017757  -0.028808  0.000571  0.000596  0.000449  0.000410  0.000571  0.000487
mse 8 0.008842 0.025796  0.001543  0.000007  0.000005  0.000007  0.000024  0.000006  0.000023
mae B 0.053047 0.082917  0.029686  0.002000 0.001679  0.002015  0.002288  0.001694  0.002338
mean ¢ 0.171005 0.093941  0.178377  0.262543  0.272532  0.258514  0.255426  0.269208  0.252188
bias ¢ -0.088995  -0.166059  -0.081623  0.002543  0.012532 -0.001486 -0.004574  0.009208 -0.007812
mse o 0.028943 0.047305  0.009177  0.002206  0.001896  0.002725  0.003091  0.002087  0.003352
mae o 0.142804 0.200365  0.082031  0.036923  0.036060  0.041672  0.045007  0.038874  0.047074

TABLE 5. Reference SV Model, Sample Size 250 - a=-0.368 5=.95 0=.26

GMM2S _GMMITER _GMMCUE GEL ET ETEL SGEL SET __ SETEL

mean o -0.287550  -0.358624  -0.178688 -0.184597 -0.174181 -0.172286 -0.184011 -0.175501 -0.178481
bias a -0.140350  -0.211424  -0.031488 -0.037397 -0.026981 -0.025086 -0.036811 -0.028301 -0.031281
mse o 0.480456 1.419835  0.036347  0.003332  0.001820  0.002089  0.004401  0.002261  0.002978
mae o 0.290438 0.426097  0.052332  0.039280  0.027872  0.026591  0.040621  0.029496  0.033409
mean 8 0.961360 0.951781  0.976673  0.975317  0.976275  0.976645  0.975205  0.976093  0.975689
bias 8 -0.018640  -0.028219  -0.003327 -0.004683 -0.003725 -0.003355 -0.004795 -0.003907 -0.004311
mse 8 0.008904 0.025951  0.000614  0.000053  0.000046  0.000051  0.000067  0.000056  0.000068
mae 3 0.039143 0.057390  0.006172  0.005015  0.003846  0.003566  0.005370  0.004078  0.004620
mean o 0.099607 0.058895  0.147883  0.162567  0.165318  0.152367  0.154270  0.165148  0.149183
bias ¢ -0.066093  -0.106805  -0.017817 -0.003133 -0.000382 -0.013333 -0.011430 -0.000552 -0.016517
mse o 0.018376 0.022620  0.003918  0.002296  0.002296  0.002485  0.002566  0.002073  0.002865
mae o 0.117220 0.138037  0.022491  0.038325  0.037033  0.038657  0.041356  0.035026  0.041933

TABLE 6. Reference SV Model, Sample Size 250 - a-.1472 §=.98 0=.1657

Reference SV Model - Sample Size 250.
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GMM2S __GMMITER _GMMCUE GEL ET ETEL SGEL SET __ SETEL
mean @ -0.657239  -0.655518  -0.646651 -0.732105 -0.731168 -0.728442 -0.731064 -0.728545 -0.730313
bias a  0.078761 0.080482  0.089349  0.003895  0.004832  0.007558  0.004936  0.007455  0.005687
mse o 0.324049 0.448948  0.321806  0.000529  0.000103  0.000284  0.000186  0.000103  0.000182
mae o 0.431807 0.524950  0.412616 0.013323  0.007189  0.011075  0.009587  0.007935  0.009229
mean 8 0.911393 0.911682  0.912914  0.901757  0.901142  0.901871  0.901144  0.901450  0.901280
bias #  0.011393 0.011682  0.012914  0.001757  0.001142  0.001871  0.001144  0.001450  0.001280
mse 8 0.005944 0.008215  0.005888  0.000011  0.000004  0.000009  0.000007  0.000005  0.000007
mae 8 0.058491 0.070958  0.056019  0.002499  0.001646  0.002257  0.002140  0.001763  0.002053
mean o 0.246982 0.220967  0.227270  0.381270  0.386004  0.377610  0.374018  0.380753  0.376954
bias o -0.115918  -0.141933  -0.135630  0.018370  0.023104  0.014710  0.011118  0.017853  0.014054
mse o 0.029136 0.041257  0.034827  0.001272  0.001388  0.001484  0.001415  0.001299  0.001300
mae o 0.146245 0173349  0.158733  0.027994  0.031482  0.030527  0.031812  0.031192  0.030416
TABLE 7. Reference SV Model, Sample Size 1000 - a=-0.736 $=.9 0=.3629

GMM2S _GMMITER _GMMCUE GEL ET ETEL SGEL SET __ SETEL

mean & -0.300991  -0.300362  -0.476716 -0.372371 -0.369634 -0.371808 -0.368965 -0.368831 -0.369742
bias a  0.067009 0.067638  -0.108716 -0.004371 -0.001634 -0.003808 -0.000965 -0.000831 -0.001742
mse o 0.108547 0.154086  0.016805  0.000462  0.000154  0.000212  0.000287  0.000194  0.000300
mae o 0.248294 0.300398  0.110979  0.011809  0.009061  0.010973  0.010886  0.009801  0.010868
mean 8 0.959360 0.959477  0.935880  0.949738  0.949870  0.949686  0.949956  0.949983  0.949848
bias 8 0.009360 0.009477  -0.014120 -0.000262 -0.000130 -0.000314  -0.000044 -0.000017  -0.000152
mse 8 0.002000 0.002828  0.000297  0.000008  0.000003  0.000004  0.000005  0.000003  0.000005
mae 8 0.033712 0.040665  0.014485  0.001599  0.001237  0.001470  0.001397  0.001205  0.001375
mean ¢ 0.156376 0134259  0.215652  0.264582  0.270840  0.264941  0.260428  0.269523  0.261419
bias ¢ -0.103624  -0.125741  -0.044348  0.004582  0.010840  0.004941  0.000428  0.009523  0.001419
mse o 0.020798 0.028795  0.002460  0.001239  0.001213  0.001342  0.001352  0.001238  0.001391
mae o 0.122116 0.146295  0.044402  0.027305  0.029037  0.029162  0.030043  0.029670  0.030514

TABLE 8. Reference SV Model, Sample Size 1000 - a=-0.368 §=.95 0=.26

GMM2S _GMMITER _GMMCUE GEL ET ETEL SGEL SET __ SETEL

mean & -0.114335  -0.119373 _ -0.150316 -0.173171 -0.164059 -0.163896 -0.174346 -0.164044 -0.165767
bias a  0.032865 0.027827  -0.003116 -0.025971 -0.016859 -0.016696 -0.027146 -0.016844 -0.018567
mse o 0.043901 0.058947  0.004958  0.001341  0.000497  0.000473  0.001637  0.000563  0.001227
mae o 0.146038 0.166462  0.022415  0.027646  0.017471  0.017493  0.029596  0.017999  0.020478
mean 8 0.984552 0.983893  0.980499  0.976673  0.977706  0.977774  0.976394  0.977703  0.977488
bias 8 0.004552 0.003893  0.000499 -0.003327 -0.002294 -0.002226 -0.003606 -0.002297 -0.002512
mse 8 0.000818 0.001091  0.000081  0.000021  0.000010  0.000009  0.000027  0.000012  0.000023
mae 8 0.019818 0.022531  0.002246  0.003557  0.002355  0.002325  0.003912  0.002425  0.002743
mean ¢ 0.078361 0.066519  0.150921  0.174408  0.171587  0.167460  0.173789  0.171004  0.167570
bias ¢ -0.087339  -0.099181  -0.014779  0.008708  0.005887  0.001760  0.008089  0.005304  0.001870
mse o 0.013792 0.016902  0.001312  0.001195  0.000971  0.000976  0.001379  0.000960  0.001094
mae o 0.104885 0.118200  0.015356  0.026957  0.024514  0.024630  0.020696  0.024281  0.026283

TABLE 9. Reference SV Model, Sample Size 1000 - o-.1472 =.98 0=.1657

Reference SV Model - Sample Size 1000.
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GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET  SETEL

mean & -0.387790  -0.320887  -0.392345 -0.706187 -0.583088 -0.705202 -0.734080 -0.688249 -0.737702
bias a  0.348210 0.406113  0.343655  0.029813  0.152912  0.030798  0.001920  0.047751 -0.001702
mse o 0.407410 0.529764  0.448516  0.030564  0.135697  0.059130  0.018108  0.298280  0.003793
mae o  0.500311 0579126  0.488393  0.075290  0.240673  0.100716  0.035211  0.243153  0.015571
mean B 0.947847 0.955695  0.947246  0.904431  0.920801  0.905838  0.901287  0.907336  0.901759
bias §  0.047847 0.055695  0.047246  0.004431  0.020801  0.005838  0.001287  0.007336  0.001759
mse 8 0.007420 0.009644  0.008133  0.000573  0.002498  0.001141  0.000342  0.005458  0.000083
mae B 0.067970 0.078549  0.066343  0.010849  0.033067  0.015050  0.005682  0.033610  0.003415
mean ¢ 0.177854 0141572  0.166061  0.345979  0.256893  0.384320  0.376598  0.293342  0.398028
bias ¢ -0.185046  -0.221328  -0.196839 -0.016921 -0.106007  0.021420  0.013698 -0.069558  0.035128
mse o 0.053409 0.071263  0.057475  0.006115  0.023314  0.006100  0.003235  0.020749  0.002738
mae o 0.204028 0.240183  0.213535  0.061064  0.125973  0.061736  0.045643  0.110763  0.044111

TABLE 10. Reference SV Model, Subset of Instruments - a=-0.736 §=.9 ¢=.3629

GMM2S _GMMITER _GMMCUE GEL ET ETEL SGEL SET __ SETEL

mean @ -0.176010  -0.167857  -0.424666 -0.371602 -0.361446 _-0.367182 -0.372230 -0.362772 -0.367428
bias a  0.191990 0.200143  -0.056666 -0.003692  0.006554  0.000818 -0.004239  0.005228  0.000572
mse o 0.226799 0.303138  0.012526  0.000276  0.000203  0.000169  0.000345  0.000091  0.000117
mae o 0.323536 0.349715  0.070120  0.010155  0.010376  0.008243  0.012456  0.006924  0.006971
mean 8 0.976343 0.977480  0.942910  0.951056  0.951271  0.950586  0.951122  0.951025  0.950734
bias 8 0.026343 0.027480  -0.007090  0.001056  0.001271  0.000586  0.001122  0.001025  0.000734
mse 8 0.004069 0.005476  0.000219  0.000010  0.000006  0.000006  0.000010  0.000003  0.000004
mae 3 0.043860 0.047336  0.009105  0.002251  0.001941  0.001689  0.002211  0.001380  0.001501
mean ¢ 0.100259 0.081734  0.214449  0.289414  0.269170  0.284782  0.285166  0.281602  0.292884
bias ¢ -0.159741  -0.178266  -0.045551  0.029414  0.009170  0.024782  0.025166  0.021602  0.032884
mse o 0.037548 0.044987  0.003587  0.001766  0.001190  0.001708  0.001545  0.001222  0.002284
mae o 0.176449 0195545 0.046372  0.032133  0.027369  0.030589  0.020887  0.028479  0.035764

TABLE 11. Reference SV Model, Subset of Instruments - a=-0.368 5=.95 0=.26

GMM2S _GMMITER _GMMCUE GEL ET ETEL SGEL SET __ SETEL

mean o -0.080063  -0.092245 _ -0.146779 -0.160451 -0.160487 -0.152710 -0.158337 -0.151514 -0.154633
bias a  0.058137 0.054955  0.000421 -0.013251 -0.013287 -0.005510 -0.011137 -0.004314 -0.007433
mse o 0.074543 0.137264  0.004951  0.000839  0.000555  0.000188  0.000673  0.000117  0.000291
mae o 0.163815 0.178350  0.028959  0.017083  0.015205  0.007540  0.016316  0.006146  0.010725
mean 8 0.988033 0.987660  0.980816  0.979301  0.978390  0.979612  0.979438  0.979615  0.979451
bias 8 0.008033 0.007660  0.000816 -0.000699 -0.001610 -0.000388 -0.000562 -0.000385 -0.000549
mse 8 0.001332 0.002385  0.000081  0.000010  0.000011  0.000003  0.000009  0.000003  0.000004
mae 8 0.022137 0.024041  0.003246  0.001962  0.002243  0.001172  0.001775  0.001188  0.001340
mean ¢ 0.056143 0.047436  0.146157  0.196089  0.176797  0.191231  0.189516  0.186095  0.196360
bias ¢ -0.109557  -0.118264  -0.019543  0.030389  0.011097  0.025531  0.023816  0.020395  0.030660
mse ¢ 0.018120 0.020777  0.002100  0.002081  0.001214  0.001677  0.001812  0.001431  0.002110
mae o 0.126418 0.135976  0.020115  0.033161  0.026940  0.029457  0.020030  0.028479  0.034580

TABLE 12. Reference SV Model, Subset of Instruments - a-.1472 §=.98 0=.1657

Reference SV Model - Subset of Instruments.
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GMM2S_GMMITER _GMMCUE GEL ET ___ BTEL SGEL SET ___SETEL
mean a -0.808594  -0.840806  -0.807848 -0.704411 -0.710422 -0.711583 -0.727010 -0.752604 -0.725200
bias a  -0.162594  -0.104806  -0.071848  0.031589  0.025578  0.024417  0.008981 -0.016694  0.010800
mse @ 0.390480  0.981390  0.843844  0.031866  0.142569  0.013417  0.002774  0.072544  0.000397
mae a 0421985  0.677693  0.578302  0.077138  0.211659  0.044133  0.016357  0.072182  0.014560
mean 8 0.880334  0.887774  0.892161  0.903264  0.902588  0.903792  0.899936  0.896904  0.900473
bias 8 -0.019666  -0.012226  -0.007839  0.003264  0.002588  0.003792 -0.000064 -0.003096  0.000473
mse 8 0.006902 0017631  0.015195 0.000610  0.002765  0.000260  0.000052  0.001422  0.000007
mae B 0.056283  0.090791  0.078059  0.010621  0.029255  0.006682  0.001934  0.009835  0.001803
mean o 0.411426  0.276272  0.277088  0.365962  0.330249  0.392250  0.401249  0.387742  0.398329
bias o 0.048526  -0.086628  -0.085812  0.003062 -0.032651  0.020350  0.038349  0.024842  0.035429
mse o 0.035925  0.046839  0.039294  0.005068  0.012450  0.004109  0.002003  0.004555  0.001863
mae o 0.144036__ 0.179405 _ 0.162927 _ 0.053270 _ 0.085005  0.051261 _ 0.041188 _ 0.051046 _ 0.039298
TABLE 13. Student t (4) Innovations in Mean - a=-0.736 §=.9 0=.3629
GMM2S_GMMITER _GMMCUE GEL ET____ ETEL SGEL SET___SETEL
mean a  -0.418591  -0.400907  -0.436561 -0.366868 -0.364062 -0.366793 -0.365613 -0.364053 -0.365115
bias a  -0.050591  -0.041907  -0.068561  0.001132  0.003938  0.001207  0.002387  0.003947  0.002885
mse @ 0.162877  0.504704  0.016724  0.000260  0.000175  0.000259  0.000197  0.000180  0.000215
mae o 0.268665  0.420585  0.078071  0.012478  0.010332  0.012119  0.010687  0.010435  0.010866
mean 8 0.944253  0.945494  0.941962  0.950021  0.950277  0.949960  0.950228  0.950265  0.950229
bias 8 -0.005747  -0.004506  -0.008038  0.000021  0.000277 -0.000040  0.000228  0.000265  0.000229
mse 8 0.002946  0.008605  0.000312  0.000005  0.000002  0.000005  0.000003  0.000003  0.000003
mae B 0.036112  0.056316  0.009965  0.001655 0.001184  0.001629  0.001271  0.001118  0.001276
mean o 0.258888  0.163107  0.230616  0.308080  0.304090  0.304898  0.305641  0.302799  0.303441
bias o -0.001112  -0.096893  -0.029384  0.048080  0.044090  0.044898  0.045641  0.042799  0.043441
mse o 0.022531  0.036115  0.002240  0.004447  0.003247  0.003896  0.004327  0.003056  0.003854
mae o 0120120 0.160839  0.033712 _ 0.053685 _ 0.047893  0.051585 _ 0.053479  0.047292  0.051053
TABLE 14. Student t (4) Innovations in Mean - a=-0.368 5=.95 0=.26
GMM2S _GMMITER _GMMCUE GEL ET __ ETEL SGEL SET ___SETEL
mean a -0.182803  -0.207332 _ -0.153876 -0.178418 -0.172451 -0.171749 -0.179504 -0.174035 -0.173768
bias a  -0.035603  -0.060132  -0.006676 -0.031218 -0.025251 -0.024549 -0.032304 -0.026835 -0.026568
mse @ 0.064698  0.362034  0.015031  0.001764  0.001905  0.001836  0.001910  0.002270  0.002064
mae o 0.162150  0.250030  0.023437  0.032214  0.025756  0.025222  0.033189  0.027654  0.027348
mean 8 0.975580  0.972639  0.979965  0.975852  0.976312  0.976454  0.975630  0.976079  0.976160
bias 8 -0.004420  -0.007361  -0.000035 -0.004148 -0.003688 -0.003546 -0.004370 -0.003921  -0.003840
mse 8 0.001189  0.005761  0.000260  0.000027  0.000049  0.000047  0.000031  0.000058  0.000052
mae B 0.021753  0.033207  0.002463  0.004285  0.003778  0.003645  0.004497  0.004054  0.003948
mean o 0.141434  0.087524  0.153574  0.206849  0.202369  0.199885  0.205119  0.203117  0.200861
bias o -0.024266  -0.078176  -0.012126  0.041150  0.036669  0.034185  0.039419  0.037417  0.035161
mse o 0.013726  0.021573  0.001190  0.003876  0.003752  0.003589  0.003721  0.004012  0.003858
mae o 0.099130  0.127428  0.013556  0.048306  0.044964  0.044559  0.048999  0.045614 _ 0.045999

TABLE 15. Student t (4) Innovations in Mean - a-.1472 $=.98 0=.1657

SV Model - Student-t in Mean Equation.
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GMM2S_GMMITER _GMMCUE GEL ET ___ BTEL SGEL SET ___SETEL
mean a -0.489227  -0.400877  -0.414510 -0.645279 -0.527524 -0.688817 -0.732088 -0.636541 -0.725662
bias a  0.246773  0.326123  0.321490  0.090721  0.208476  0.047183  0.003912  0.099459  0.010338
mse @ 0.204811 0598153  0.570777  0.062880  0.157706  0.159874  0.034620  0.208947  0.001027
mae a  0.447530  0.597699  0.566140  0.135388  0.277889  0.169003  0.050133  0.260987  0.019382
mean 8 0.934580  0.945279  0.944608  0.911168  0.927605  0.905506  0.899820  0.913821  0.901443
bias 8 0.034579  0.045279  0.044608 0.011168  0.027605  0.005506 -0.000180  0.013821  0.001443
mse 8 0.005378  0.010677  0.010224  0.001163  0.002921  0.003044  0.000682  0.003908  0.000023
mae 3 0.060665  0.080809  0.076761  0.018336  0.037783  0.023940  0.006913  0.035885  0.002971
mean o 0.290520  0.203847  0.211820  0.352261  0.299423  0.379088  0.388014  0.323308  0.398034
bias o -0.072371  -0.159053  -0.151080 -0.010639 -0.063477  0.016188  0.025114 -0.039592  0.035134
mse o 0.040188  0.061685  0.053119  0.009106  0.022248  0.008340  0.003194  0.019586  0.002666
mae o 0161437 0.214730 _ 0.199325 _ 0.073127 _ 0.118990  0.069374 _ 0.045031 _ 0.103051 _ 0.043476
TABLE 16. Student t (4) Innovations in Mean, Subset of Instruments - a—-
0.736 =.9 0=.3629
GMM2S_GMMITER _GMMCUE GEL ET ___ BTEL SGEL SET ___SETEL
mean a  -0.212205  -0.188704 _ -0.381028 -0.370669 -0.361173 -0.367182 -0.373580 -0.361736 -0.366302
bias o 0.155795  0.179296  -0.013028 -0.002669  0.006827  0.000818 -0.005580  0.006264  0.001698
mse @ 0.151073  0.250103  0.004146  0.000320  0.000217 ~ 0.000351  0.000469  0.000131  0.000170
mae o 0.289612  0.348350  0.041639  0.011552  0.011170  0.011661  0.014248  0.008588  0.008391
mean 8 0.971552  0.974813  0.949139  0.950362  0.950847  0.949851  0.950648  0.950749  0.950230
bias 8 0.021552  0.024813  -0.000861  0.000362  0.000847 -0.000149  0.000648  0.000749  0.000230
mse B 0.002782  0.004466  0.000074  0.000012  0.000006  0.000011  0.000011  0.000004  0.000006
mae B 0.039291  0.047117  0.005421  0.002340  0.001886  0.002199  0.002342  0.001441  0.001700
mean o 0.163153  0.114320  0.248484  0.311227  0.304519  0.310048  0.310693  0.303892  0.307685
bias o -0.096847  -0.145680  -0.011516  0.051227  0.044518  0.050048  0.050693  0.043892  0.047685
mse o 0.030464  0.042008  0.001299  0.004046  0.003705  0.004212  0.004070  0.002848  0.003464
mae o 0.149490  0.184456  0.024816  0.052409  0.048864  0.051927  0.052690  0.045343  0.048842
TABLE 17. Student t (4) Innovations in Mean, Subset of Instruments - a—-
0.368 =.95 0=.26
GMM2S_GMMITER _GMMCUE GEL ET____ ETEL SGEL SET___SETEL
mean a -0.074284 0071013 -0.150531 -0.162376 -0.166849 -0.154680 -0.158033 -0.155140 -0.153788
bias a  0.072916  0.076187  -0.003331 -0.015176 -0.019649 -0.007489 -0.010833 -0.007949  -0.006588
mse @ 0.028767  0.072554  0.008817  0.000874  0.001352  0.000405  0.000949  0.000434  0.000259
mae o 0.139566  0.156468  0.026179  0.019321  0.021606  0.009982  0.017845  0.009705  0.010202
mean 8 0.989995  0.990442  0.980081  0.978495  0.977240  0.978996  0.979330  0.978898  0.979279
bias 8 0.009995  0.010442  0.000081 -0.001505 -0.002760 -0.001004 -0.000661 -0.001102 -0.000721
mse 8 0.000533  0.001320  0.000149  0.000016  0.000033  0.000011  0.000014  0.000013  0.000005
mae 3 0.018938  0.021213  0.003100  0.002503  0.003344  0.001732  0.002077  0.001849  0.001444
mean o 0.077686  0.057410  0.154182  0.209621  0.203023  0.207680  0.206146  0.205631  0.209157
bias o -0.088014  -0.108200  -0.011518  0.043921  0.037323  0.041980  0.040446  0.039931  0.043457
mse o 0.015682  0.019399  0.001735  0.003441  0.003193  0.003309  0.003071  0.002986  0.003199
mae o 0.115388  0.130757 _ 0.018132  0.045794 _ 0.042404 _ 0.043876 _ 0.042707 _ 0.042980 _ 0.045337

TABLE 18. Student t (4) Innovations in Mean, Subset of Instruments - a-.1472
B=.98 0=.1657

SV Model - Student-t in Mean Equation - Subset of Instruments.



ESTIMATION OF STOCHASTIC VOLATILITY MODELS USING GEL/GMC

GMM2S_GMMITER _GMMCUE GEL ET ___ BTEL SGEL SET ___SETEL
mean & -2.019463  -2.019004  -1.353874 -0.710185 -0.878625 -0.718273 -0.726762 -0.874355 -0.715406
bias a  -1.283463  -1.283004  -0.617874  0.016815 -0.142625  0.017727  0.009238 -0.138355  0.020594
mse @ 5.053566  6.598158  3.044399  0.058803  0.680573  0.015097  0.016660  0.644231  0.001293
mae a 1475510  1.659492  1.051613  0.099185  0.432671  0.048763  0.039363  0.277956  0.024200
mean 8 0.720150 0719250  0.811384  0.898652  0.876085  0.900611  0.897372  0.877314  0.899777
bias B -0.179850  -0.180750  -0.088616 -0.001348 -0.023915  0.000611 -0.002628 -0.022686 -0.000223
mse B 0.097458  0.128318  0.059642  0.001216  0.013893  0.000300  0.000337  0.012709  0.000020
mae B 0.205075  0.231269  0.146937  0.013264  0.060945  0.006534  0.004285  0.038086  0.002403
mean o 0.532352  0.431597  0.357978  0.366275  0.346430  0.393303  0.397762  0.381166  0.397085
bias o 0.169452  0.068697  -0.004922  0.003375 -0.016470  0.030403  0.034862  0.018266  0.034185
mse o 0.109984  0.085714  0.058204  0.005314  0.023325  0.003714  0.002450  0.014768  0.001909
mae o 0.251868  0.239819  0.198540  0.051763  0.111622 _ 0.047475 _ 0.043035 _ 0.079160 _ 0.038535
TABLE 19. Student t (4) Innovations in Variance - a=-0.736 §=.9 0=.3629

GMM2S_GMMITER _GMMCUE GEL ET____ ETEL SGEL SET___SETEL

mean & -1.531838  -1.505341  -0.411508 -0.363040 -0.356500 -0.360347 -0.357152 -0.355783 -0.356305
bias a  -1.163838  -1.137341  -0.043598  0.004960  0.011491  0.007653  0.010848  0.012217  0.011695
mse @ 4.582102 5703206 0.006206  0.000298  0.000293  0.000355  0.000448  0.000265  0.000321
mae o 1.265176  1.353192  0.048679  0.013481  0.015033  0.015479  0.015028  0.014312  0.015145
mean B 0.786817  0.789921  0.942056  0.949416  0.949709  0.949327  0.949691  0.949781  0.949705
bias 8 -0.163183  -0.160079  -0.007044 -0.000584 -0.000291 -0.000673 -0.000309 -0.000219  -0.000295
mse 8 0.089675  0.112105  0.000128  0.000005  0.000002  0.000005  0.000005  0.000002  0.000003
mae B 0.176775  0.189182  0.007696  0.001525  0.001065  0.001646  0.001189  0.000972  0.001124
mean o 0.438012  0.340150  0.227405  0.294889  0.292910  0.290458  0.282838  0.292852  0.281492
bias o 0.178012  0.080150  -0.032595  0.034889  0.032910  0.030458  0.022838  0.032852  0.021492
mse o 0.111763  0.085479  0.001741  0.002467  0.001768  0.002375  0.001898  0.001811  0.001844
mae o 0.241064  0.225776 _ 0.034656 _ 0.041202 _ 0.037140 _ 0.040675 _ 0.036961 _ 0.038883 _ 0.037063

TABLE 20. Student t (4) Innovations in Variance - a=-0.368 5=.95 0=.26

GMM2S _GMMITER _GMMCUE GEL ET __ ETEL SGEL SET ___SETEL

mean a -1.183910  -1.169166 _ -0.139778 -0.169468 -0.177636 -0.176430 -0.171889 -0.177510 _-0.180039
bias a  -1.036710  -1.021966  0.007422 -0.022268 -0.030436 -0.029230 -0.024689 -0.030310 -0.032839
mse o 4167620  5.284636  0.002062  0.000871  0.003163  0.003335  0.001260  0.002726  0.003574
mae o 1.083632  1.122330  0.019276  0.022964  0.030810  0.030064  0.026382  0.030722  0.033550
mean 8 0.833844  0.835416  0.981116  0.976373  0.974736  0.974993  0.975766  0.974741  0.974392
bias 8 -0.146156  -0.144584  0.001116 -0.003627 -0.005264 -0.005007 -0.004234 -0.005259 -0.005608
mse 8 0.083851  0.106097  0.000032  0.000019  0.000090  0.000091  0.000030  0.000079  0.000099
mae B 0.152473  0.158181  0.002408  0.003689  0.005304  0.005093  0.004429  0.005307  0.005681
mean o 0.340019  0.254258  0.148694  0.191014  0.199949  0.194585  0.182533  0.197417  0.188237
bias o 0.174319  0.088558  -0.017006  0.025314  0.034249  0.028885  0.016833  0.031717  0.022537
mse o 0.097556  0.071992  0.001456  0.001879  0.003394  0.003096  0.001858  0.003056  0.002708
mae o 0.222331  0.195336  0.017893  0.033934 _ 0.042568 _ 0.040125  0.033289  0.041190  0.037962

TABLE 21. Student t (4) Innovations in Variance - a-.1472 =.98 0=.1657

SV Model - Student-t in Volatility Equation.



ESTIMATION OF STOCHASTIC VOLATILITY MODELS USING GEL/GMC 29

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean o -1.624080 -1.558604 -1.060265 -0.734392 -0.676903 -0.956436 -0.853334 -1.077795 -0.725856
bias a  -0.888080 -0.822604 -0.324265 0.001608 0.059097  -0.220436 -0.117334  -0.341795 0.010144
mse « 3.928852 4.590728 2.015175 0.173709 0.230651 0.815326 0.491227 1.434573 0.088954
mae o 1.200330 1.292493 0.849144 0.137095 0.238348 0.374986 0.176277 0.537670 0.045287
mean 3 0.773478 0.782450 0.851910 0.896662 0.905272 0.864619 0.879744 0.849333 0.899025
bias 8 -0.126522 -0.117550 -0.048090 -0.003338 0.005272  -0.035381 -0.020256 -0.050667 -0.000975
mse f3 0.077261 0.090068 0.039782 0.003338 0.004464 0.017650 0.009865 0.027960 0.001882
mae f3 0.167782 0.180375 0.118296 0.018190 0.032246 0.054444 0.023862 0.074613 0.005793
mean o 0.490207 0.430327 0.370190 0.380871 0.359469 0.428566 0.398392 0.407583 0.403044
bias o 0.127307 0.067427 0.007290 0.017971  -0.003431 0.065666 0.035492 0.044683 0.040144
mse o 0.097302 0.093233 0.060965 0.007639 0.015327 0.017199 0.006391 0.031044 0.003633
mae o 0.226197 0.236678 0.191858 0.061614 0.091534 0.096654 0.051057 0.117093 0.048806

TABLE 22. Student t (4) Innovations in Variance, Subset of Instruments -
a=-0.736 =.9 0=.3629

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean o -1.197984 -1.098225 -0.361745 -0.370533 -0.361434 -0.368460 -0.371025 -0.358880 -0.365012
bias a  -0.829984 -0.730225 0.006255 -0.002533 0.006566  -0.000460 -0.003025 0.009120 0.002988
mse « 3.604356 3.690784 0.001912 0.000341 0.000276 0.000471 0.000384 0.000188 0.000241
mae o 0.987495 0.971869 0.017620 0.011394 0.013219 0.015002 0.012487 0.011009 0.010551
mean f3 0.832283 0.845932 0.949841 0.949360 0.949605 0.948366 0.950019 0.949814 0.949038
bias B -0.117717 -0.104068 -0.000159 -0.000640 -0.000395 -0.001634 0.000019 -0.000186  -0.000962
mse f3 0.071710 0.073722 0.000037 0.000010 0.000007 0.000016 0.000007 0.000002 0.000007
mae f3 0.138731 0.136549 0.002583 0.002030 0.001903 0.002706 0.001824 0.001152 0.001797
mean o 0.387174 0.328301 0.261493 0.316921 0.301799 0.312991 0.310528 0.307241 0.316634
bias o 0.127174 0.068301 0.001493 0.056921 0.041799 0.052991 0.050528 0.047241 0.056634
mse o 0.092473 0.081984 0.001088 0.004417 0.002851 0.004073 0.003565 0.002990 0.004241
mae o 0.208110 0.207164 0.019947 0.057437 0.045345 0.054480 0.051266 0.049407 0.057532

TABLE 23. Student t (4) Innovations in Variance, Subset of Instruments -
a=-0.368 $=.95 0=.26

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean o -1.013611 -0.966006 -0.160485 -0.162815 -0.170481 -0.159132 -0.158832 -0.158234 -0.152619
bias a  -0.866411 -0.818806 -0.013285 -0.015615 -0.023281 -0.011932 -0.011632 -0.011034 -0.005419
mse o 4.022485 4.187654 0.038329 0.001189 0.001502 0.007726 0.001482 0.000565 0.000261
mae « 0.936151 0.921012 0.031955 0.018731 0.024269 0.014440 0.015531 0.013051 0.008082
mean 3 0.857288 0.863844 0.977562 0.977898 0.976214 0.977718 0.978634 0.977919 0.978892
bias 8 -0.122712 -0.116156 -0.002438 -0.002102 -0.003786 -0.002282 -0.001366 -0.002081 -0.001108
mse f3 0.080732 0.084098 0.000880 0.000030 0.000039 0.000203 0.000033 0.000017 0.000008
mae f3 0.132099 0.129967 0.004854 0.002841 0.003945 0.002639 0.002217 0.002398 0.001452
mean o 0.304510 0.262075 0.168088 0.211233 0.203048 0.207656 0.205108 0.212755 0.214762
bias o 0.138810 0.096375 0.002388 0.045533 0.037349 0.041956 0.039408 0.047055 0.049062
mse o 0.086786 0.077900 0.002828 0.003107 0.002707 0.003095 0.002736 0.003547 0.003678
mae o 0.201054 0.195892 0.017739 0.046314 0.040821 0.043382 0.040756 0.049855 0.050215

TABLE 24. Student t (4) Innovations in Variance, Subset of Instruments -
a-.1472 =98 0=.1657

SV Model - Student-t in Volatility Equation - Subset of Instruments.



ESTIMATION OF STOCHASTIC VOLATILITY MODELS USING GEL/GMC 30

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET  SETEL

mean o -0.896686  -0.921662  -0.796078 -0.728243 -0.835926 -0.729340 -0.734904 -0.757911 -0.732839
bias & -0.160686  -0.185662  -0.060978  0.007757 -0.099926  0.006660  0.001096 -0.021911  0.003161
mse a  0.758956 1.251152  0.627006  0.029238  0.367820  0.005461  0.001601  0.075302  0.000141
mae o 0.563200 0.764779  0.503486  0.055221  0.350987  0.024025 0.010621  0.085502  0.008789
mean 8 0.879116 0.875898  0.892628  0.901656  0.885525  0.903877  0.900704  0.897573  0.901291
bias 8 -0.020884  -0.024102  -0.007372  0.001656 -0.014475  0.003877  0.000704 -0.002427  0.001291
mse #  0.013699 0.022533  0.011362  0.000583  0.007103  0.000121  0.000031  0.001436  0.000007
mae f 0.076157 0.103184  0.068596  0.008517  0.048875 0.005174  0.001878  0.012231  0.001886
mean o 0.287003 0.236533  0.232068  0.355123  0.286266  0.399452  0.397132  0.351652  0.393545
bias ¢ -0.075897  -0.126367  -0.130832 -0.007777 -0.076634  0.036552  0.034232 -0.011248  0.030645
mse o 0.032933 0.049530  0.039221  0.004932  0.019929  0.003515  0.002085  0.008075  0.001812
mae o 0.150171 0189751  0.171741  0.055842  0.114077  0.048633  0.041545  0.069468  0.037968

TABLE 25. Level Outlier - a=-0.736 5=.9 0=.3629

GMM2S_GMMITER _GMMCUE GEL ET ETEL SGEL SET __ SETEL

mean o 0.450450  -0.452413  -0.505817 -0.360780 -0.366575 -0.368322 -0.367022 -0.366164 -0.365422
bias & -0.082450  -0.084413  -0.137817 -0.001780  0.001425 -0.000322  0.000978  0.001836  0.002578
mse a  0.351303 0.524573  0.020065  0.000364  0.000199  0.000283  0.000401  0.000209  0.000378
mae a  0.375102 0.464943  0.140401 0.012881  0.010511  0.012609  0.012380  0.011065  0.012730
mean 8 0.939147 0.938991  0.931884  0.950220 0.950221  0.950119  0.950194  0.950278  0.950372
bias 4 -0.010853  -0.011009  -0.018116  0.000220  0.000221  0.000119  0.000194  0.000278  0.000372
mse #  0.006482 0.009584  0.000528  0.000007  0.000003  0.000005  0.000006  0.000003  0.000006
mae 8 0.050839 0.062913  0.018567  0.001763  0.001325 0.001726  0.001484  0.001256  0.001481
mean o 0.185589 0.143397  0.208345 0.266704  0.273863  0.263786  0.259905  0.272609  0.259491
bias ¢ -0.074411  -0.116603  -0.051655 0.006704  0.013863  0.003786 -0.000095  0.012609 -0.000509
mse o 0.026369 0.036223  0.003550  0.001492  0.001554  0.001678  0.001966  0.001545  0.002029
mae o 0.134897 0.165390  0.051706  0.030328  0.032812  0.033478  0.036517  0.033588  0.036596

TABLE 26. Level Outlier - a=-0.368 5=.95 0=.26

GMM2S _GMMITER _GMMCUE GEL ET ETEL SGEL SET __ SETEL

mean a -0.227624  -0.232687 _ -0.156716 -0.177422 -0.167124 -0.166912 -0.178924 -0.168041 -0.169662
bias & -0.080424  -0.085487  -0.009516 -0.030222 -0.019924 -0.019712 -0.031724 -0.020841 -0.022462
mse o 0.182403 0.256869  0.008321  0.001678  0.000806  0.000916  0.002641  0.000985  0.001197
mae a  0.234099 0.269799  0.031758  0.031825 0.020514  0.020990  0.034853  0.021881  0.024061
mean 8 0.969217 0.968663  0.979613  0.976150  0.977225  0.977292  0.975734  0.977080  0.976873
bias 8 -0.010783  -0.011337  -0.000387 -0.003850 -0.002775 -0.002708 -0.004266 -0.002920 -0.003127
mse #  0.003380 0.004678  0.000148  0.000025  0.000019  0.000021  0.000044  0.000023  0.000026
mae 8 0.031679 0.036386  0.003503  0.004078  0.002851  0.002860  0.004695  0.003064  0.003324
mean o 0.107893 0.083627  0.145206 0.174273  0.172216  0.163029  0.167475 0.170336  0.162140
bias ¢ -0.057807  -0.082073  -0.020494  0.008573  0.006516 -0.002671  0.001775  0.004636 -0.003560
mse o 0.016458 0.020176  0.002062  0.001507  0.001380  0.001435 0.001771  0.001392  0.001579
mae o 0.112344 0127673 0.020619  0.030929  0.029741  0.029958  0.034131  0.029380  0.032292

TABLE 27. Level Outlier - a-.1472 8=.98 0=.1657

SV Model - Level Outlier.
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GMM2S __GMMITER _GMMCUE GEL ET ETEL SGEL SET __ SETEL
mean & -0.606501  -0.573558  -0.538447 -0.687828 -0.625810 -0.706385 -0.774831 -0.809760 -0.733482
bias & 0.129409 0.162442  0.197553  0.048172  0.110181  0.029615 -0.038831 -0.073760  0.002518
mse a  0.584982 0.692991  0.525481  0.080173  0.219997  0.190438  0.116738  0.801588  0.001846
maec o 0.515088 0.569472  0.498117  0.135071  0.306007  0.204829  0.100064  0.469002  0.017395
mean 8 0.918228 0.922744 0927494  0.906621  0.915070  0.905568  0.895372  0.890500  0.902918
bias 8 0.018228 0.022744  0.027494  0.006621  0.015070  0.005568 -0.004628 -0.009500  0.002918
mse 8 0.010605 0.012582  0.009568  0.001503  0.004040  0.003652  0.002273  0.014845  0.000050
mae 8 0.069723 0.077076  0.067698  0.018982  0.041769  0.029291  0.014573  0.064207  0.003939
mean ¢ 0.248488 0.222641  0.223980  0.323688  0.283371  0.372535  0.363399  0.298043  0.405760
bias ¢ -0.114412  -0.140259  -0.138920 -0.039212 -0.079529  0.009635  0.000499 -0.064857  0.042860
mse o 0.036861 0.047877  0.042372  0.007156  0.016915  0.009111  0.004789  0.025874  0.003402
mac o 0.159842 0.184737  0.173584  0.065210 _ 0.103195  0.076377  0.049515  0.123514  0.048524
TABLE 28. Level Outlier, Subset of Instruments - a=-0.736 5=.9 0=.3629

GMM2S__GMMITER _ GMMCUE, GEL BT ETEL SGEL SET __ SETEL

mean & -0.335845  -0.330780  -0.386053 -0.370560 -0.360749 -0.366858 -0.372057 -0.362454 -0.367322
bias &  0.032155 0.037211  -0.018053 -0.002569  0.007251  0.001142 -0.004957  0.005546  0.000678
mse a  0.393126 0.447313  0.005856  0.000258  0.000216  0.000272  0.000349  0.000100  0.000117
mae «  0.346897 0.376404  0.033920  0.009525  0.010960  0.010322  0.012304  0.007358  0.006922
mean B 0.954821 0.955542  0.948156  0.950982  0.951276  0.950536  0.951031  0.950969  0.950638
bias 8 0.004821 0.005542  -0.001844  0.000982  0.001276  0.000536  0.001031  0.000969  0.000638
mse B 0.007061 0.008069  0.000095  0.000009  0.000006  0.000008  0.000010  0.000003  0.000005
mac 8 0.046834 0.050766  0.004224  0.002083  0.001983  0.001981  0.002292  0.001400  0.001500
mean ¢ 0.163024 0.146836  0.230379  0.288998  0.270922  0.285684  0.288388  0.284835  0.293978
bias ¢ -0.096976  -0.113164  -0.029621  0.028998  0.010922  0.025684  0.028388  0.024835  0.033978
mse o 0.028388 0.034878  0.002244  0.001811  0.001298  0.001837  0.001679  0.001516  0.002272
mac o 0.143643 0.161651  0.031444  0.032089  0.028832  0.032401 _ 0.031920 _ 0.031852 _ 0.036552

TABLE 29. Level Outlier, Subset of Instruments - a«=-0.368 =.95 0=.26

GMM2S__GMMITER _ GMMCUE, GEL BT ETEL SGEL SET __ SETEL

moan o -0.188493  -0.208328  -0.132164 -0.159277 -0.163758 -0.151777 -0.158373 -0.151709 -0.154944
bias @ -0.0412903  -0.061128  0.015036 -0.012077 -0.016558 -0.004577 -0.011173 -0.004509 -0.007744
msea  0.277367 0.463592  0.002377  0.000597  0.000662  0.000095  0.000625  0.000122  0.000265
mae o 0.217575 0.248036  0.026094  0.016203  0.017784  0.005898  0.015817  0.006516  0.010448
mean 8 0.974756 0.972189  0.982451  0.979374  0.977933  0.979646  0.979411  0.979550  0.979339
bias 8 -0.005244  -0.007811  0.002451 -0.000626 -0.002067 -0.000354 -0.000589 -0.000450 -0.000661
mse 8 0.004900 0.008202  0.000043  0.000007  0.000013  0.000003  0.000008  0.000003  0.000004
mae 8 0.029199 0.033214  0.003226  0.001859  0.002529  0.001038  0.001722  0.001228  0.001289
mean ¢ 0.100210 0.092477  0.140692  0.196440  0.181443  0.192532  0.189730  0.189435  0.196667
bias ¢ -0.065490  -0.073223  -0.025008  0.030740  0.015743  0.026832  0.024030  0.023735  0.030967
mse o 0.017358 0.020779  0.002875  0.001913  0.001262  0.001657  0.001677  0.001469  0.002163
mac o 0.115406 0.125359  0.025701 _ 0.033128 _ 0.027601 _ 0.030217 _ 0.027776 _ 0.029240 _ 0.034699

TABLE 30. Level Outlier, Subset of Instruments - o-.1472 5=.98 0=.1657

SV Model - Level Outlier - Subset of Instruments.



ESTIMATION OF STOCHASTIC VOLATILITY MODELS USING GEL/GMC

GMM2S _GMMITER _GMMCUR GEL ET ETEL SGEL SET __ SETEL
moan o -0.706232  -0.637902  -0.502404 -0.709767 -0.704501 -0.725353 -0.730109 -0.734256 -0.731349
bias & 0.029768 0.098098  0.143596  0.026233  0.031499  0.010647  0.005891  0.001744  0.004651
msc o 0.465434 0.924587  0.469655  0.015619  0.119894  0.004171  0.001127  0.017193  0.000166
mae o 0.454061 0.648185  0.466139  0.043156  0.177426  0.021347  0.011337  0.036012  0.009249
mean 8 0.904874 0.914112  0.920234  0.903850  0.903874  0.903045  0.900937  0.900494  0.900896
bias 8 0.004874 0.014112  0.020234  0.003850  0.003874  0.003045  0.000937  0.000494  0.000896
mse 8 0.008459 0.016728  0.008446  0.000292  0.002275  0.000089  0.000022  0.000323  0.000005
mae 8 0.061305 0.087544  0.063305  0.006366  0.024527  0.004016  0.001827  0.005275  0.001637
mean o 0.256169 0.177301  0.185598  0.363270  0.300050  0.393189  0.400320  0.377173  0.396990
bias o -0.106731  -0.185599  -0.177302  0.000370 -0.062850  0.030289  0.037420  0.014273  0.034090
mse o 0.033791 0.059072  0.049032  0.005121  0.015349  0.003025 0.001967  0.004401  0.001776
mac o 0.153312 0.214148  0.195515  0.055298  0.097185  0.045333  0.040743  0.051957 _ 0.038353
TABLE 31. Volatility Outlier - a=-0.736 §=.9 0=.3629
GMM2S__GMMITER _ GMMCUE, GEL BT ETEL SGEL SET __ SETEL
moan o -0.351070  -0.352200  -0.508079 -0.370434 -0.365020 -0.368212 -0.367283 -0.365273 -0.367459
bias @  0.016030 0.015800  -0.140979 -0.002434  0.002080 -0.000212  0.000717  0.002727  0.000541
mse o 0.334339 0.610981  0.030704  0.001105  0.000219  0.000269  0.000495  0.000259  0.001637
mae o 0.329172 0438042  0.144810  0.014213  0.011012  0.012832  0.012775  0.011757  0.013554
mean 8 0.952649 0.952680  0.931288  0.949823  0.950035  0.949864  0.949897  0.950127  0.949848
bias 8 0.002649 0.002689  -0.018712 -0.000177  0.000035 -0.000136 -0.000103  0.000127 -0.000152
mse B 0.005887 0.010844  0.000560  0.000017  0.000003  0.000005  0.000008  0.000004  0.000027
mac 8 0.044410 0.059013  0.019272  0.001791  0.001296  0.001651  0.001511  0.001290  0.001593
mean ¢ 0.158805 0.108873  0.202559  0.269724  0.274544  0.267376  0.265636  0.273019  0.265015
bias o -0.101195  -0.151127  -0.057441  0.009724  0.014544  0.007376  0.005636  0.013019  0.005015
mse o 0.026434 0.040086  0.004335  0.001910  0.001650  0.001972  0.002104  0.001773  0.002085
mac o 0.138501 0.180479  0.057666  0.033782  0.034282  0.035755  0.037771 _ 0.035826 _ 0.037569
TABLE 32. Volatility Outlier - «=-0.368 §=.95 0=.26
GMM2S__GMMITER _ GMMCUE, GEL BT ETEL SGEL SET __ SETEL
moan a -0.148088  -0.156272 _ -0.153073 -0.175806 -0.168742 -0.169571 -0.177988 -0.171109 -0.173611
bias @ -0.000888  -0.009072  -0.005873 -0.028606 -0.021542 -0.022371 -0.030788 -0.023909 -0.026411
mse a  0.097686 0.181002  0.001995  0.001490  0.001060  0.001655  0.002637  0.001731  0.002607
mae a  0.179616 0.224732  0.021219  0.029802  0.022380  0.023438  0.034092  0.024905  0.027865
mean 8 0.979896 0.978821  0.980121  0.976108  0.976763  0.976686  0.975623  0.976401  0.976064
bias # -0.000104  -0.001179  0.000121 -0.003892 -0.003237 -0.003314 -0.004377 -0.003599  -0.003936
mse 8 0.001817 0.003372  0.000031  0.000025  0.000027  0.000042  0.000047  0.000045  0.000061
mae 8 0.024394 0.030485  0.002028  0.004047  0.003334  0.003450  0.004797  0.003721  0.004109
mean ¢ 0.083003 0.058572  0.150466  0.174770  0.176514  0.168816  0.170293  0.175436  0.167197
bias o -0.082697  -0.107128  -0.015234  0.009070  0.010814  0.003116  0.004593  0.009736  0.001497
mse o 0.015647 0.020630  0.001414  0.001570  0.001758  0.001881  0.001829  0.001875  0.001901
mac o 0.112508 0.132708 _ 0.015302 _ 0.031762 _ 0.032617 _ 0.032367 _ 0.034844 _ 0.033013 _ 0.033659
TABLE 33. Volatility Outlier - a-.1472 =.98 0=.1657

SV Model - Volatility Outlier.



ESTIMATION OF STOCHASTIC VOLATILITY MODELS USING GEL/GMC 33

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET  SETEL
mean & -0.380933  -0.319525  -0.346457 -0.675964 -0.533546 -0.689775 -0.722365 -0.629596 -0.730389
bias a  0.355067 0.416475  0.389543  0.060036  0.202454  0.046225  0.013635  0.106404  0.005611
mse o 0.400762 0.522664  0.372611  0.053243  0.136697  0.052746  0.017866  0.201125  0.002570
mae o  0.507168 0.583628  0.506768  0.103944  0.263422  0.106389  0.039998  0.254014  0.016877
mean B 0.948491 0.956853  0.953213  0.908027  0.927169  0.907076  0.902300  0.914907  0.902072
bias 8 0.048491 0.056853  0.053213  0.008027  0.027169  0.007076  0.002300  0.014907  0.002072
mse 8 0.007406 0.009648  0.006851  0.000982  0.002507  0.001024  0.000334  0.003711  0.000057
mae B 0.068937 0.079200  0.068915  0.014429  0.035831  0.015276  0.005944  0.034862  0.003113
mean ¢ 0.183818 0142762 0.161442  0.338956  0.248977  0.380012  0.374279  0.283110  0.396593
bias ¢ -0.179082  -0.220138  -0.201458 -0.023944 -0.113923  0.017112  0.011379 -0.079790  0.033693
mse o 0.052152 0.071179  0.060068  0.008752  0.025916  0.006950  0.004083  0.023850  0.002701
mae o 0.200869 0.239498  0.218347  0.070212  0.132413  0.064921  0.048370  0.118879  0.043555
TABLE 34. Volatility Outlier, Subset of Instruments - a=-0.736 8=.9 ¢=.3629

GMM2S _GMMITER _GMMCUE GEL ET ETEL SGEL SET __ SETEL

mean o -0.172707  -0.155808  -0.416848 -0.371238 -0.360159 -0.366675 -0.372505 -0.361854 -0.366928
bias a  0.195293 0.212192  -0.048848 -0.003238  0.007841  0.001325 -0.004505  0.006146  0.001072
mse o 0.205893 0.235857  0.008678  0.000264  0.000227  0.000177  0.000371  0.000112  0.000124
mae o 0.315813 0.339617  0.063105  0.010417  0.011081  0.008793  0.012457  0.007730  0.007175
mean B 0.976594 0.978933  0.943591  0.950694  0.951035  0.950248  0.950705  0.950765  0.950356
bias 8 0.026594 0.028933  -0.006409  0.000694  0.001035  0.000248  0.000705  0.000765  0.000356
mse 8 0.003823 0.004361  0.000162  0.000008  0.000005  0.000005  0.000009  0.000003  0.000005
mae B 0.042912 0.046096  0.008475  0.002108  0.001795  0.001665  0.002122  0.001287  0.001475
mean o 0.104251 0.082372 0217374  0.293798  0.272302  0.287402  0.288896  0.283725  0.295915
bias ¢ -0.155749  -0.177628  -0.042626  0.033798  0.012302  0.027402  0.028896  0.023725  0.035915
mse o 0.036282 0.044006  0.003188  0.002233  0.001357  0.001832  0.001810  0.001541  0.002494
mae o 0.172382 0.192864  0.044066  0.036650  0.029614  0.032069  0.032802  0.032286  0.038483

TABLE 35. Volatility Outlier, Subset of Instruments - a=-0.368 5=.95 0=.26

GMM2S _GMMITER _GMMCUE GEL ET ETEL SGEL SET __ SETEL

mean o -0.087077  -0.083241 _ -0.151204 -0.158665 -0.161511 -0.153171 -0.158281 -0.152353 -0.153574
bias a  0.060123 0.063959  -0.004094 -0.011465 -0.014311 -0.005971 -0.011082 -0.005153 -0.006374
mse o 0.113590 0127431 0.014150  0.000588  0.000775  0.000351  0.000671  0.000194  0.000245
mae o 0.162835 0.170595  0.028076  0.015739  0.016077  0.007695  0.014863  0.006753  0.009692
mean 8 0.988190 0.988723  0.980057  0.979187  0.977970  0.979248  0.979189  0.979258  0.979384
bias 8 0.008190 0.008723  0.000057 -0.000813 -0.002030 -0.000752 -0.000811 -0.000742 -0.000616
mse 8 0.002128 0.002384  0.000221  0.000010  0.000019  0.000009  0.000010  0.000005  0.000004
mae 8 0.022082 0.023135  0.003205  0.001995  0.002513  0.001365 0.001746  0.001348  0.001257
mean ¢ 0.057910 0.048059  0.148996  0.197172  0.182484  0.192340  0.190732  0.192244  0.199407
bias ¢ -0.107790  -0.117641  -0.016704  0.031472  0.016784  0.026640  0.025032  0.026544  0.033707
mse o 0.018145 0.020719  0.001930  0.002109  0.001506  0.001826  0.001733  0.001906  0.002436
mae o 0.125675 0135012 0.018445  0.034274  0.029489  0.030313  0.028883  0.032819  0.037243

TABLE 36. Volatility Outlier, Subset of Instruments - a-.1472 =.98 0=.1657

SV Model - Volatility Outlier - Subset of Instruments.



ESTIMATION OF STOCHASTIC VOLATILITY MODELS USING GEL/GMC

FIGURES

FIGURE 1. MSE and MAE of the estimation of the reference models with
sample size 500 and 24 moment conditions.
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ESTIMATION OF STOCHASTIC VOLATILITY MODELS USING GEL/GMC

FIGURE 2. Relative Efficiency in the reference models - Effect of sample size
- (MSE sample size 250 /MSE sample size 1000). Estimation based on 24
moment conditions

@ cfiiciency gain mse alpha

@ cfiiciency gain mse beta
efficiency gain mse sigma
€T

GMM2S  GMMITER GMMCUE  GEL

@ cfiiciency gain mse alpha
@ cficiency gain mse beta
efficiency gain mse sigma

2

ki

ETEL SGEL SET SETEL GMM2S  GMMITER GMMCUE  GEL ETEL SGEL SET SETEL

@ ciiciency gain mse alpha
@ ciiciency gain mse beta
efficiency gain mse sigma

llmmtﬁmﬁ

GMM2S  GMMITER GMMCUE  GEL

ETEL SGEL SET SETEL

35



ESTIMATION OF STOCHASTIC VOLATILITY MODELS USING GEL/GMC

FIGURE 3. MSE and MAE of the estimation of the reference models with
sample size 500 and 14 moment conditions.

Experiment 1 - Subset Instruments a =-.736 y=.9 o° =.3629

GMM2S  GMMITER GMMCUE

il

GEL

ﬂfl

- e alpha s . - e alpha
mae alpha mae alpha
@& mse gamma @& mse gamma
mae gamma B mae gamma
mse sigma®2 27 mse sigma®2
- e signa~2 - e signa~2
ﬂ_ﬂ:l ]

Experiment 1 - Subset Instruments a =-0.368 y =.95 o° =.26

ETEL SGEL SET SETEL GMM2S  GMMITER GMMCUE  GEL ET ETEL SGEL SET SETEL

Experiment 1 - Subset Instruments  =-.1472 y =98 0% =.1657

- e aipha
mae alpha
@ mse gamma

- e signa2

LI NN

GMM2S ~ GMMITER GMMCUE  GEL ETEL SGEL SET SETEL

36



ESTIMATION OF STOCHASTIC VOLATILITY MODELS USING GEL/GMC

FIGURE 4. Relative Efficiency in the reference models - Effect of number of mo-
ment conditions - (MSE 24 moment conditions /MSE 24 moment conditions).

Sample size 500.
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FiGURE 5. MSE and MAE of the estimation of the reference models, modified
with Student-t with 4 d.f. innovation in the mean equation. Sample size 500
and 24 moment conditions.
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FiGURE 6. MSE and MAE of the estimation of the reference models, modified
with Student-t with 4 d.f. innovation in the mean equation. Sample size 500
and 14 moment conditions.

Experiment 2 - Subset Instruments a =-.736 y=.9 o° =.3629 Experiment 2 - Subset Instruments o =-0.368 y =.95 0° =.26
@ mse alpha @ mse alpha
1l mae alpha m mae alpha
@ mse gamma 8- @ mse gamma
mac gamma s mac gamma
24 mse sigmar'2 mse sigma’2
- mae sigma’2 - mae sigma’2
GMM2S  GMMITER GMMCUE  GEL e ETEL  SGEL  SET  SETEL GMM2S  GMMITER GMMCUE  GEL e ETEL  SGEL  SET  SETEL
Experiment 2 - Subset Instruments  =-.1472 y =98 0% =1657
9 @ mse alpha
° mae alpha
O @ mse gamma
mae gamma
mse sigma’2
- e signa2

§EEMﬂQJﬂJ

GMM2S ~ GMMITER GMMCUE  GEL ETEL SGEL SET SETEL

39



ESTIMATION OF STOCHASTIC VOLATILITY MODELS USING GEL/GMC

FI1GURE 7. Relative Efficiency in the reference models modified with Student-t
with 4 d.f innovation in the mean equation - Effect of number of moment con-
ditions - (MSE 14 moment conditions /MSE 24 moment conditions). Sample
size 500.
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FiGURE 8. MSE and MAE of the estimation of the reference models, modified
with Student-t with 4 d.f. innovation in the volatility equation. Sample size

500 and 24 moment conditions.
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FiGURE 9. MSE and MAE of the estimation of the reference models, modified
with Student-t with 4 d.f. innovation in the volatility equation. Sample size
500 and 14 moment conditions.
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ESTIMATION OF STOCHASTIC VOLATILITY MODELS USING GEL/GMC

F1GURE 10. Relative Efficiency in the reference models modified with Student-
t with 4 d.f innovation in the volatility equation - Effect of number of moment
conditions - (MSE 14 moment conditions /MSE 24 moment conditions). Sam-
ple size 500.
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FiGURE 11. MSE and MAE of the estimation of the reference models, modified
with Level Outlier. Sample size 500 and 24 moment conditions.
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FIGURE 12. MSE and MAE of the estimation of the reference models, modified
with Level Outlier. Sample size 500 and 14 moment conditions.
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FiGURE 13. Relative Efficiency in the reference models with level outlier -
Effect of number of moment conditions - (MSE 14 moment conditions /MSE
24 moment conditions). Sample size 500.
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FIGURE 14. MSE and MAE of the estimation of the reference models modified
with volatility outlier. Sample size 500 and 24 moment conditions.
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FIGURE 15. MSE and MAE of the estimation of the reference models modified
with volatility outlier. Sample size 500 and 14 moment conditions.
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F1GURE 16. Relative Efficiency in the reference models modified with volatility
outlier - Effect of number of moment conditions - (MSE 14 moment conditions
/MSE 24 moment conditions.) Sample size 500.
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