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Big-fish lies

Marcelo de Carvalho Griebeler∗

Federal University of Rio Grande do Sul
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Abstract

We provide an alternative to Bayesian updating in cheap-talk games, which does

not require the receiver know the sender’s type distribution. This is done through

an anecdotal application, in which a fisherman reports to his friends the size of a

fish he caught in the city’s lake. Our findings show that the fisherman will always

report a size higher than the mean, and this reported value is independent of the

actual size of the caught fish. This result holds as long as the fisherman presents

no aversion to lie and no reputation concerns. We illustrate the applicability of our

approach through a simple model of monetary economics, in which a central bank

must choose the level of the economy’s interest rate in order to control inflation

based on the inflation expectation reported by heterogeneous and self-interested

agents.

Keywords: cheap-talk; Bayesian updating; monetary economics.

JEL: D83; D01; C79.

1 Introduction

Since the seminal paper by Crawford and Sobel (1982) cheap-talk games have been mod-

eled within the standard framework of signaling games. The sequence of movements in

the communication between a sender and a receiver is, in general, as follows: the sender

learns some realization of a random variable θ, then selects a message m to send to the

receiver; the receiver, who does not observe the realization of θ, receives the message

from the sender and then chooses an action a. The basic assumptions in this context

are that the probability distribution of θ is common knowledge and the receiver knows

∗Address: Universidade Federal do Rio Grande do Sul, Faculdade de Ciências Econômicas, Av.

João Pessoa, 52 sala 33 - 3○ andar, Centro, Porto Alegre-RS, Brazil, ZIP code: 90040-000. E-mail:

marcelo.griebeler@ufrgs.br.
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the sender’s type distribution, such that the former is able to update his prior about the

latter after receiving m, which is made by using the Bayes rule (Green and Stokey, 2007;

Sobel, 2013).

As we can see, using Bayesian updating requires that the receiver have some knowledge

about the sender. However, in several circumstances may be difficult to envision that

the receiver knows the sender type’s distribution and thus has information enough to

construct his priors. While it is plausible to assume that a decision maker does have

such knowledge when he consults a known expert periodically, this may not be the case

when it is the first consultation with an unknown one. As another example, consider a

situation with many different experts1 and a single decision maker who is seeking advice

from them. As the number of experts increases, the difficulty to know the distribution

of the each one’s type increases as well. In such cases it seems reasonable to think about

an alternative that does not require the knowledge about the type’s distribution.

In this paper we provide a model of cheap-talk which does not require the receiver

know the sender’s type distribution. Although we still assume that the distribution of the

variable of interest (θ in the above setting) is common knowledge, we allow the receiver to

have no information about sender’s preferences or behavior. This is made by introducing

a function that measures the probability of the sender lying, given that the receiver has

observed the sent message. The idea is that by knowing the probability distribution

of the variable of interest, the receiver gives lower weight to reported values that are

distant from the mean. Thus, the expected value of the variable can be computed and

the receiver can choose his action based on such a value.

We present our model through an anecdotal application, in which a fisherman reports

to his friends the size of a fish he caught in the city’s lake. He wants his friends to believe

he caught the largest possible fish, such that he faces the trade-off every liar does: he has

an incentive to overstate the fish’s size, but by doing so the reported size distances from

the mean of fish’s size in that lake, which is known by his friends. The trade-off between

the magnitude of the reported value and its trustworthiness holds as long as the group

of friends does not know anything about the fisherman’s preferences and behavior, but

knows the distribution of fishes in the city’s lake.

Our findings show that the fisherman will always report a size higher than the mean,

and this reported value is independent of the actual size of the caught fish. Hence, he will

always lie — unless the actual size of the caught fish be equal to his optimal value — but

the reported value will not necessarily be higher than the true one. In fact, if he caught a

fish whose size is higher than the optimal value obtained in his optimization problem, he

will understate the true size. However, the independence between the reported and the

actual value may be not appealing in several applications. We overcome such a difficulty

1On models with many senders see Ambrus and Takahashi (2008); Battaglini (2002); Gilligan and
Krehbiel (1989).
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by adding a moral cost of lying, which decreases the magnitude of the lie. Reputation is

also studied when we add dynamics in the baseline model, such that the trustworthiness of

the reported value in the second period depend on the “forecast error” (i.e. the magnitude

of the lie) in the first one. This modification also makes the reported value be more close

to the true one.

A straightforward application in monetary economics is also presented. We study the

central bank’s choice of the level of the economy’s interest rate when its objective is to

control inflation. Among a set of simplifying assumptions, we suppose that only interest

rate and economy’s inflation expectation affect inflation. As inflation expectation is not

observed by the central bank, it is reported by a forecaster (e.g a commercial bank)

instead, we have a communication game. We believe that this application fits our basic

model well because the number of forecasters who report the inflation expectation to

the monetary authority is large and they may have very different incentives to lie. For

instance, while a commercial bank may have assets indexed to the interest rate, and thus

wants the highest possible interest rate, another financial institution may have debts

indexed to the same variable, which makes it want to report a lower expectation in order

to induce a decrease in the rate. Those two features make it difficult for the central bank

to know any information about the forecasters — even the distribution of their types.

An important remark is that our results hold whenever the receiver knows nothing

about the sender’s utility, that is whenever the only common knowledge information is

the distribution of the variable of interest. Thus, our model does not apply to situations

in which the receiver knows that the sender has incentives to overstate (or understate)

his reported value. For example, suppose that an employer is interviewing a candidate

for a vacant job in his company. Suppose also that the employee’s wage will be deter-

mined based on the candidate’s productivity. Thus, the employer is sure that there is no

incentive for a particular candidate to report a variable related with productivity lower

than the mean of the pool of candidates. In this case, our approach is not suitable, and

the standard models of cheap-talk will surely perform better.

While there is a clear advantage in adopting the model we suggest in this paper,

namely there is no need that the receiver knows the sender’s type distribution, there

is also some drawbacks when it is compared to Bayesian updating. For instance, our

approach requires ad hoc functional form for the function which measures the probability

that the sender is telling the truth — and for the moral and reputation costs as well,

whenever we extend the model in those directions. As we comment in section 4, the

choice of those functional forms are critical, such that different functions may generate

different results. In fact, our results are particularly dependent on the assumption that

the variable of interest is normally distributed. Nevertheless, as the aforementioned

application to the monetary economics shows, there are circumstances which Bayesian

updating is not satisfactory, and our alternative model may fill this gap.
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The main contribution of this paper is to provide an alternative method of modelling

cheap-talk games, without requiring that the receiver know the probability distribution of

the sender’s type. Thus, our results contribute to the literature of sender-receiver games

in general (Crawford and Sobel, 1982; Green and Stokey, 2007; Sobel, 2013), which use

Bayesian updating. In particular, as the application to monetary economics developed in

section 3 shows, our approach is notably suitable for modeling games with many senders

and one receiver, such as those analyzed by Battaglini (2002), Ambrus and Takahashi

(2008) and Gilligan and Krehbiel (1989). Another paper which investigates the role of the

number of experts (senders) in the information’s quality is Krishna and Morgan (2001),

which found that, when there are two experts, it is always beneficial for the receiver to

consult both if they are biased in opposite directions.

Because our model is extended to incorporate a moral cost of lying, it is also related

with the literature which analyzes lying aversion. Some remarkable empirical papers

in this field which are close to ours are Gneezy (2005), Chakravarty et al. (2011) and

López-Pérez and Spiegelman (2013). While Gneezy (2005) performs a seminal study on

general aspects of lying aversion by using a standard sender-receiver game, Chakravarty

et al. (2011) analyzes the interaction between friendship and deceptive behavior, and

López-Pérez and Spiegelman (2013) tries to isolate the effect of pure lying aversion,

among the several incentives to tell the truth people face. Further, Erat and Gneezy

(2012) investigates the aforementioned issues by focusing only on the so-called white

lies. Accordingly, our model can be seen as a theoretical contribution to this incipient

literature.

Finally, given that we provide an alternative to Bayesian updating, our model has

similarities with works which adopt non-Bayesian updating, such as Epstein (2006), Ep-

stein et al. (2008) and Epstein et al. (2010). On the one hand, those studies are quite

more general than ours, such that they can be applied to different problems. In particu-

lar, their approach is suitable even for models with many senders. On the other hand, it

requires that the receiver know the distribution of the types, like in the standard models

with Bayesian updating, such that the major difference related to the latter is the way the

updating is performed, and not the informational requirements. Our model, in contrast,

requires less information, but is more limited in terms of applications.

The paper is organized as follows. The next section presents a model of big-fish lies,

where we use an anecdote to present our alternative to Bayesian updating in cheap-talk

models. We start with a baseline model, which represents the typical trade-off face by

any liar, and then we add aversion to lie and reputation concerns in the sender’s utility.

Section 3 suggests an application of our model to a problem in monetary economics,

and thus illustrates the strength of our approach for some specific situations. Section 4

concludes by analyzing how dependent on the assumptions made throughout the text our

results are. All the proposition’s proofs are presented in the appendix A.
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2 A model of big-fish lies

2.1 Baseline model

A fisherman must tell the size of the fish that he caught in the city’s lake to his friends.

Although they do not observe the size of this specific fish, they do know the distribution

of size of the fishes that live in the city’s lake. Let us assume that the fish’s size x is

normally distributed with mean µ > 0 and variance σ2 > 0. The fisherman wants their

friends to believe that he caught a big fish, but if he overstates the size reported to them,

they will distrust his announcement2. Therefore the trade-off faced by him is the same

that every liar does.

As the support of the normal distribution is R but the fish’s size is x ≥ 0, we must

impose an assumption that ensures that the probability of any negative size is inconsid-

erable. By doing so we can use all the desirable properties that the normal distribution

offers us and thus do not need to search for a probability distribution supported on the

semi-infinite interval [0,∞).

Assumption 2.1 µ and σ2 are such that F (0) < ε, where ε > 0 is an arbitrary small

constant and F (⋅) is the probability distribution function of the normal distribution.

Given that the probability distribution is common knowledge, his friends can evaluate

the probability of the fisherman telling the truth when x is reported by3

P (x) = 1 − (2∫
x

µ
f(y)dy)

2

, (2.1)

where f(⋅) is the probability density of the normal distribution. Observe that we im-

plicitly assume that fisherman’s friends do not know his utility function, such that they

assign positive probability for sizes lower than the mean. This means that they do not

know the incentives to overstate the fish’s size that the fisherman faces. They may be-

lieve, for instance, that he would report a smaller fish to avoid to share it with his friends.

In fact, they do not even have a prior about his preferences, which in turn rules out the

possibility of Bayesian updating after receiving the reported fish’s size.

We can sustain the above assumption by arguing that the fisherman may have to

tell the fish’s size to a group of strangers, such that those people do not know anything

about his preferences. Another possibility is that the same group of people may face

many different fishermen, which may make it difficult to characterize each one of them

2We consider the most common case but the fisherman might have incentive to tell that he caught
a small fish as well. For example, suppose that he has promised to share the fish with his friends. In
this case, the smaller the fish they believe to have been caught, the larger the share that the fisherman
appropriates.

3By choosing a suitable σ it is possible to show that P (x) is a probability density function, that is,

∫

+∞

0 P (x)dx = 1.

5



separately. In addition, in several applications, such as the one of section 3, in which in-

flation expectation are reported by a large group of economic forecasters, the assumption

does hold, once it is very difficult for the central bank to know something about their

preferences.

The functional form of (2.1) has some desirable properties: (i) P (µ) = 1; (ii) P (x) is

symmetrical, such that P (x) = P (−x); and (iii) limx→+∞P (x) = limx→−∞P (x) = 0. Given

their limited information, their friends assign the maximum probability when the reported

value is equal to the mean. In addition, equal-size positive and negative deviations from

the mean decrease the probability at the same magnitude. Finally, as the deviation

becomes higher — with either very high x or very low x —, the assigned probability

approaches zero. Some further properties of the probability function are established

below.

Proposition 2.2 The probability (2.1) is a bell-shaped, quasiconcave function of x and

achieves its unique global maximum when x = µ.

The fisherman’s utility is given by U(x) = P (x)x, that is, it depends only on the

expected value of the fish’s size (in his friends’ point of view). This means that it is

desirable to increase the reported value x, but by doing so he may also distance the

reported value from the mean, which decreases the probability P (x). This is the trade-

off faced by the fisherman: he would want to exaggerate the reported value, but this

would reveal that he is lying.

Given our assumptions, it is straightforward to show that U has some desirable prop-

erties.

Proposition 2.3 The utility function is a quasiconcave function of x for all x > 0.

The above proposition guarantees that the first order condition (FOC) of the fisher-

man’s problem is both necessary and sufficient for the maximum. Its FOC is given by

following expression dU/dx = P (x) + xP
′
(x) = 0, that is,

[1 − (2∫
x

µ
f(y)dy)

2

] − 8xf(x)∫
x

µ
f(y)dy = 0. (2.2)

Because (2.2) is an integral equation involving the normal distribution, it is not clear

that it has a solution. We must analyze this subject.

Proposition 2.4 For given σ2, there exists µ̄ > 0 such that the fisherman’s FOC (2.2)

has a unique solution. Let x∗ be such a solution, then x∗ is a maximum of U(x) and

µ < x∗ < µ + σ. Moreover, x∗ is independent of x̃.
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The figure below presents the fisherman’s utility function and the probability P (⋅)

for x ∼ N (2,2). One can see that both are bell-shaped and that µ < x∗ < µ + σ, as the

proposition above states.

2 4 6 8

0.5

1

1.5

2 U(x)

P (x)
x

Fisherman’s utility and the probability function

Notice that the realization of the random variable x̃, the actual fish’s size, observed

only by the fisherman, play no role in his optimal choice. In fact, it does not affect his

utility, since there is neither an ex-post penalty on his utility imposed by the principal

in case of reporting a lie nor a moral cost of lying that he must pay, for example. We

consider these and other ways of incorporating the effect of x̃ on the optimal choice later.

The second part of proposition 2.4 is rather important because it claims that the

fisherman will always report a value higher than the mean. As x̃ does not affect his

choice, that means that he will always lie unless x̃ = x∗. However, there is an upper

bound of the reported value, namely µ + σ for any (µ,σ) ∈ R2
++

. Thus, given x̃, the

fisherman’s lie is never higher than such a threshold, which is also independent of the

actual fish’s size. The existence of this upper bound is other effect of the typical liar’s

tradeoff. We discuss how much this result depends on the assumptions made about the

probability distribution and the functional form of P (x) later in section 4.

Given that the actual fish’s size does not affect the fisherman’s optimal decision, one

can wonder why their friends should take into account the reported size. In fact, his

report is not informative at all, such that after observing it, the group of friends learns

nothing about x̃. However, recall that our major assumption is that they indeed do not

know anything about the fisherman’s preferences, which implies that they are not able to

figure out that his choice is independent of the actual fish’s size. Thus, they may consider

the fisherman as an “expert” and ponder his “advice”.

The role of the uncertainty on the optimal choice is analyzed below.

Proposition 2.5 The optimal choice x∗ is a strictly increasing function of σ2.
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Given x, a higher level of uncertainty, measured by the variance of the distribution

of x, makes the receiver assign a higher probability of the agent being telling the true.

Geometrically, a higher variance makes not only the normal distribution’s tails heavier,

but it also increases the sender’s utility for any given x. The reason is that the utility

function U(x) is displaced northeast, which makes the optimal choice x∗ be higher. In

fact, a higher level of uncertainty benefits the fisherman because now their friends know

that the chance of catching large fish in the city’s lake is not too small, such that he has

a margin to lie larger than he did when there was low level of uncertainty. Given that

the mean is fixed, the higher the uncertainty the more incentive to lie — the more the

distance between the reported value and the mean.

So far we have not used the cheap-talk standard notation. However, it is straight-

forward to present our model in such a basic setting. Let the receiver’s utility be given

by V (a, x) = (a −E(x))
2
, where a is his action. Observe that we are assuming that all

the fisherman’s friends are represented by a single agent (the receiver). Moreover, let

U(a, x) = a be the utility of the sender (fisherman). Now, assume that the receiver knows

nothing about the sender — not even the distribution of his type — but does know the

distribution of x and uses E(x) = P (x)x to calculate the expected value of the reported

variable, and the sender knows the receiver’s utility. Thus, the sender is able to anticipate

the receiver’s best response a(x) = xP (x) and then will optimize U(a, x) = xP (x), which

is the same problem we discussed above.

2.2 Aversion to lie

In a static setting, one way of making the fisherman’s optimal choice depend on the

actual size of the caught fish is by adding a cost of lying. This can happen whenever the

fisherman dislikes lying — he may have a certain degree of aversion to it —, such that this

loss of utility may be seen as a moral cost. In fact, as empirical literature has reported

(e.g. Chakravarty et al., 2011; Gneezy, 2005), even if lying is rewarded, people often set

their own boundaries between unethical and self, or socially, approved deception, weigh

the costs and benefits of lying. This may make them choose to tell the truth even when

it is economically disadvantageous to do so.

A suitable manner to model lying aversion is by assuming that the fisherman’s utility

function now is V (x, x̃) = U(x) − λ(x, x̃), where λ(⋅) is an increasing function of ∣x − x̃∣.

For example, λ(x, x̃) = α(x − x̃)2 with α > 0 may measure the moral cost associated with

his lies. Observe that α measures the degree of lie aversion: the higher α, the higher the

disutility from lying.

Proposition 2.6 Suppose that the fisherman’s utility function is V (x, x̃) = U(x)−λ(x, x̃),

where λ(x, x̃) = α(x − x̃)2, with α > 0, measures the moral cost of lying. Then:
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(i) For given σ2 and x̃, there exists ¯̄µ > 0 and α, ᾱ ∈ R, such that if α ∈ R/(α, ᾱ), the

fisherman’s problem has a maximum x∗(x̃);

(ii) ∣x∗(x̃) − x̃∣ < ∣x∗ − x̃∣, that is, the optimal reported size is closer to the actual one

than it is in the case without moral cost;

(iii) When x̃ < µ, if α > 1/[2( ¯̄µ − x̃)] > ᾱ, then x∗(x̃) < µ.

Notice that V (⋅) is a sum of a quasiconcave function, U(⋅), and a concave function,

−λ(⋅, x̃), which does not allow us to guarantee quasiconcavity of V . This drawback

makes statements about existence and uniqueness of the solution different from those of

proposition 2.4. First, now we need a further condition to guarantee the concavity of V

at the optimal, namely either α < α or α > ᾱ. The idea is that with a low (high) α, the

first (second) term of the sum in V has a relatively higher (lower) weight in V , and given

that it is quasiconcave (concave), the maximum is guaranteed. Put differently, either a

sufficiently low or a sufficiently high moral cost of lying is a sufficient condition to x(x̃)

be a maximum of V .

The introduction of moral costs makes the fisherman decrease the magnitude of the

lie, as item (ii) and (iii) of the above proposition state. For instance, when the actual

size of the caught fish is lower than the mean, for a sufficiently high level of aversion

to lie the fisherman chooses to report a size lower than the mean. Recall that in the

baseline model, the value reported is always higher than the mean, such that now we can

notice the strength of the moral cost in driving the fisherman’s choice. The threshold

that defines whether α is sufficiently high depends on the distance between the mean and

actual size: the higher such a distance — for a given mean, the smaller the caught fish —

the lower is the threshold, such that the moral cost does not need to be too high in order

to make the fisherman choose x∗(x̃) < µ. In fact, proposition 2.6 formalizes the common

sense that a person who does not like lying will not be a good liar.

The function chosen to embody the moral costs in the fisherman’s utility was made

in ad hoc manner. In fact, there are other functional forms that satisfy the requirement

of being increasing in the deviation from the true value x̃, such as λ̄(x, x̃) = −α ∣x − x̃∣ and

λ̂(x, x̃) = −α(x − x̃)4 with α > 0. We choose the particular form λ above because of its

simplicity, and due to the fact of being widely used in cheap-talk models. However, the

main result of this section, namely that a moral cost drives the reported size toward the

actual one, thus decreasing the magnitude of the lie, holds for any functional form that

satisfies the required properties.

2.3 Dynamics and reputation

Suppose now that the fisherman caught two fishes in different moments, such that he must

tell the size of each fish to his friends in different periods. Let the actual fishes’ sizes be

9



given by x̃1 and x̃2, where the subscript indexes the periods t = 1,2. It is reasonable to

assume that their friends observe x̃1 in the beginning of the second period, such that they

penalize the fisherman whenever he lies — x∗∗1 ≠ x̃1, where x∗∗1 is the reported size in the

first period in the model with two periods. We also assume that the xt ∼ N (0, σ2) for

t = 1,2 and x1 and x2 are independent. All this information is common knowledge.

We can model the punishment by assuming that there are reputational costs in lying,

namely the trustworthiness of the report of second period x∗∗2 is lower whenever the

fisherman lies in the first period4. A suitable way to model such punishment is through

the following function, which measures the probability of the fisherman telling the truth

when x2 is reported, given that x̃1 was observed and x1 was the value reported in the

first period:

π (x2∣x1, x̃1) = δ (x1, x̃1)P (x2), (2.3)

where P (⋅) is the probability that measures the trustworthiness in the static model, given

by (2.1), and δ ∶ R→ [0,1] is the reputation function, which we define as

δ (x1, x̃1) = e
−(x1−x̃1)

2

. (2.4)

In a similar way to the probability function (2.1), the reputation function has some

desirable properties. First, when the fisherman did not lie in the first period, that is, x1 =

x̃1, there is no loss of reputation, such that δ(x̃1, x̃1) = 1 and thus π (x2∣x1, x̃1) = P (x2).

Second, δ(x1, x̃1) is symmetric around its maximum, which is achieved at x1 = x̃1, as we

have seen. Thus, we have δ(x1, x̃1) = δ(−x1, x̃1), which means that only lie’s magnitude

is important and not whether it overstated or understated the true value. Finally, the

reputation function is bell-shaped, such that limx1→+∞ δ(x1, x̃1) = limx1→−∞ δ(x1, x̃1) =

0 for any given x̃1. This means that as the lie increases the trustworthiness of the

fisherman’s report approaches zero5.

In the two-period model, the fisherman’s utility has the following form W (x1, x2) =

U(x1)+βU(x2), where β ∈ (0,1) is his intertemporal discount rate and we have assumed

additivity for the sake of simplicity. By substituting the instantaneous utility function in

the previous expression, we are able to set the fisherman’s optimization problem, namely

max
x1,x2∈R

x1P (x1) + βx2δ (x1, x̃1)P (x2). (2.5)

4A good survey on reputation effects both under Bayesian and non-Bayesian updating may be found
in Cabral (2005).

5There are several other functional forms which are suitable to model the reputation effects on the
fisherman’s utility. For instance, one can consider that the penalty is larger when the reported value is
higher than the true one than when it is lower. In this case, the reputation function would be asymmetric.
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The solution can be found through the problem’s FOC:

x1P
′
(x1) + P (x1) − 2(x1 − x̃1)e−(x1−x̃1)

2
βx2P (x2) = 0 (2.6)

βe−(x1−x̃1)
2
[x2P

′
(x2) + P (x2)] = 0, (2.7)

where we choose to show δ
′
(x1, x̃1) explicitly in order to make the results below more

easily understandable.

Observe that there is no change in the second period’s optimal choice, since the

expression between brackets in (2.7) is identical to (2.2), and thus x∗∗2 = x∗1. In fact,

because t = 2 is the last period, there is no loss in terms of reputation in lying and the

fisherman’s trade-off is the same as the static model, namely between the highness of

his report and its trustworthiness. In the first period, however, he must now take into

account the effects of his potential lie on his reputation — and thus on the trustworthiness

of x2. This creates a different trade-off: he wants his friends to believe that the fish is

big, but by overstating the actual fish’s size his report becomes less trustworthy and he

loses reputation, which affects his utility in the next period.

We have seen that (2.7) has a solution x∗∗2 = x∗1 > µ. Now we must show that (2.6)

has solution as well.

Proposition 2.7 Suppose that the fisherman’s utility function is W (x1, x2) = U(x1) +

βx2δ(x1, x̃1)P (x2), where δ(x1, x̃1) is the reputation function, given by δ(x1, x̃1) = e−(x1−x̃1)
2
.

Then:

(i) For given σ2 and x̃1, there exists µ̄ > 0 and β̄ ∈ (0,1) such that if β < β̄, then the

fisherman’s dynamic problem has a maximum (x∗∗1 , x
∗∗

2 );

(ii) x2 is independent of x̃2 and x∗∗2 = x∗1 > µ̄ for any set of parameters, where x∗1 is the

solution of the baseline model;

(iii) ∣x∗∗2 − x̃1∣ > ∣x∗∗1 − x̃1∣ for any set of parameters, that is, the optimal reported size in

the first period is closer to the actual one than it is in the static model;

(iv) When x̃1 < µ, if β̄ > β > e(x1−x̃1)
2

x2δ(x1,x̃1)P (x2)
, then x̃∗∗ < µ.

The existence part of proposition 2.7 is somehow weaker than the one of proposition

2.4. As once can see in the item (i) above, we now have an additional requirement to

ensure the concavity of the utility function at the optimum, namely β < β̄. This means

that if the fisherman is impatient enough — or puts sufficiently low weight on future

— (x∗∗1 , x
∗∗

2 ) gives him the maximum utility. Once we are not able to show that W is

quasiconcave, a lower β makes the second term of W , βδ(x1, x̃1)x2P (x2), insignificant

relative to the first one, x1P (x1), which we have already known that is quasiconcave
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(proposition 2.3). Furthermore, the impossibility of showing the quasiconcavity of W

implies that there is no longer guarantee that the solution is unique.

As in the static model with moral costs, the fisherman reports a fish’s size closer to

the true one in the first period than it does in the baseline model when he has reputation

concerns. This is stated in the item (iii) of proposition 2.7. With regard to item (ii),

observe that, although now the actual size of the caught fish affects the fisherman’s

optimal choice in the first period, the reported size in the second one is independent of

both x̃1 and x̃2. The intuition is simple: since that the second period is the last one, the

fisherman’s choice is identical to one of the static model, which we have already seen that

is independent of the true fish’s size.

The strength of the incentive created by the reputation function is showed by the item

(iv) of proposition 2.7. When the actual size of the fish caught in the first period is lower

than the mean of those in the city’s lake, the fisherman reports a value lower than the

mean as well, as long as he is sufficiently patient. Given that the gains from reputation

are felt in the second period, the incentive to tell the truth — actually, to decrease the

magnitude of the lie — is stronger when the fisherman puts sufficiently high weight on

future. Recall that in the absence of any incentive to tell the truth, in the baseline model,

the size reported by the fisherman is always larger than the mean, which highlights the

importance of the result.

3 An application to monetary theory

Consider the following application of our model. A central bank wants to control inflation

π(i, πe) — e.g. inflation target may be π∗ = 0 — through the use of the interest rate i, but

inflation is also affected by the economy’s inflation expectation πe. With the simplifying

assumptions that there is no other variable affecting π (e.g. output or exchange rate) and

that π ∈ [0,∞), we have the following marginal effects πi < 0 and ππe > 0 for all (i, πe) ∈ R2.

The actual economy’s inflation expectation is not observed by the central bank, such that

it only knows its probability distribution. One can justify this assumption by assuming

that the monetary authority has a department of forecasting, but its forecast is not

precise, maybe due to some informational disadvantage compared to private forecasters.

Suppose that πe ∼ N (µ,σ2), like in our baseline model.

The central bank does not choose the interest rate based only on its own information,

rather it also uses the inflation expectation x reported by a forecaster, who may be a

commercial bank or other kind of financial institution6. Once again, we assume that the

agent who receives the information does not know anything about the sender. As in most

6For the sake of simplicity, we assume one single sender in this application, even though in practice the
central bank receives information from a large number of heterogeneous forecasters. A broader analyzes
including many different forecasters would require a more complex macro framework.
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of the cases the monetary authority gathers information from a pool of many forecasters,

such that it may be hard to know even the distribution of the types of each one. Thus,

the central bank uses the reported value x to build its expected value of πe, namely

E(πe) = xP (x), where P (x) is given by (2.1). By optimizing its payoff function v(i, x),

we are able to obtain its best response i (E(πe)), with i
′
(⋅) > 0 for all x. This function can

be seen as a simple Taylor rule and it is consistent with several straightforward functional

forms of v(i, x)7.

For the sake of simplicity, let the forecaster’s utility be given by u(x, i) = Ai, where

the constant A > 0 means that he owns assets indexed to the economy’s interest rate.

Therefore, he wants to report the highest possible value in order to make the central

bank increase i, which in turn increases his earnings as well. In a more general models,

the utility’s forecaster may also be affected by the inflation itself and other economic

variables that depend on his report. The forecaster may be an investor whose assets

are indexed to inflation but his debts are indexed to i, for example. Notice that this

situation would create ambiguous incentives to lie, once a high x would increase both

variables. By assuming the same assumptions of our baseline model, the forecaster is

able to anticipate the central bank’s best response i (xP (x)), such that he will optimize

u(x, i) = Ai (xP (x)). The FOC of his problem is Ai
′
(xP (x)) (P (x) + xP

′
(x)) = 0, which

has the same solution as (2.2).

The conclusion of this straightforward application can be drawn from the proposition

2.4: the inflation expectation reported by the forecaster will be higher than the mean and

thus the central bank will choose a level of interest rate higher than the one associated

to this mean. Observe that in this one-shot communication game the actual inflation

expectation plays no role in the forecaster’s choice, which means that he will always lie

unless πe = x∗. However, the forecaster will not always report a value higher than the πe:

if the actual inflation expectation is high enough, then he will be better off by reporting

a lower value, closer to the mean, given that the central bank knows only the distribution

of πe. This strong results depends on the set of simplifying assumption we have made,

but it is particularly dependent on the fact that there is no penalty on his utility imposed

by the central banker in case of reporting a lie. In practice — or in a dynamic model,

like the one developed in section 2.3 — the central bank can observe πe with delay and

then impose an ex-post punishment on the forecaster, which creates incentives not to lie.

Under these circumstances, reputational issues become important and must be studied.

7For instance, with π∗ = 0, a linear payoff function such as v(i, x) = π(i, πe
) = αE(πe

) − βi achieves
zero inflation when i (E(πe

)) = (α/β)E(πe
) and satisfies all the desirable properties above listed.
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4 Concluding remarks

We conclude by commenting some of the limitations imposed by the functional forms we

adopted throughout the text. The results presented so far are based on the assumption

that the actual fish’s size is normally distributed. In fact, we have used the symmetry

around the mean, the bell-shaped form and other properties of the normal distribution

to prove propositions 2.2 and 2.4, which in turn are used to prove the subsequent results.

Yet, any distribution f whose shape is similar to the one of the normal — symmetric

around the mean, f
′
(x) > 0 if x < µ and f

′
(x) < 0 if x > µ, and bell-shaped — would

present similar results. We choose the normal due to its widely usage and simplicity. The

extension of our model to different distributions is not straightforward, as one can see in

the proof of the aforementioned propositions. In fact, it is not clear whether our results

hold with distributions that do not have the same features as the normal.

The functional form of the probability assigned by his friends to the fisherman’s report

— equation (2.1) — is also ad hoc. One can wonder how dependent on this assumption

our results are. A situation in which such a question may arise is when the fisherman’s

friends know that he has an utility that is increasing in the expected value of the fish’s

size. Therefore, although they still do not know his whole utility function, they do know

that it is increasing and thus that the fisherman has incentives to overstate the reported

fish’s size. In this case, whenever a value below the mean is reported, they assign a

probabiliity higher than if one above the mean were reported. For example, they may

believe that his incentives to lie are very strong, such that they assign the following

probability to the reported fish’s size

P (x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, if x < µ,

1 − (2 ∫
x

µ f(y)dy)
2

if x ≥ µ.

Several other functional forms are possible to model P (⋅), and the best choice depends on

the information about the sender the receiver has. Once again, it is not clear whether our

results hold with different functional forms, given that the properties of P (⋅) are largely

used in the proof of our main propositions.
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A Omitted proofs

A.1 Proposition 2.2

Let us start by showing that P (x) is quasiconcave. Take any K ∈ (0,1) such that

P (x) =K, then

K = 1 − (2∫
x

µ
f(y)dy)

2

⇒ ∫

x

µ
f(y)dy = ±

√
1 −K

2
(A.1)

has two roots x < µ and x > µ, because f(⋅) is the normal probability density function.

In fact, ∣x − µ∣ = ∣x − µ∣ due to the symmetry of f(⋅).

We must show that P (x) > K for all x ∈ (x,x), which is equivalent to prove that

an increase in K makes the interval (x,x) smaller. In order to prove this statement,

we write (A.1) as g(K,x) = 1 −K − (2 ∫
x

µ f(y)dy)
2
= 0 and then calculate the following

derivative dx/dK = −1/ (8 ∫
x

µ f(y)dyf(x)) through the implicit function theorem. Thus,

dx/dK(x) > 0 and dx/dK(x) < 0.

In order to see that x = µ is a unique global maximum of P (x), observe that P
′
(x) =

−8 ∫
x

µ f(y)dyf(x) = 0 if and only if x = µ, because f(x) > 0 for all x ∈ R. As P (x) is a

quasiconcave function in the real line, then x = µ is a unique global maximum.

Finally, given that P (x) is quasiconcave, x = µ is its unique global maximum, and

P (x) > 0 for all x ∈ R, it is enough to observe that limx→−∞ = limx→+∞ = 0 to prove that

P (x) is bell-shaped. ∎

A.2 Proposition 2.3

Notice that we can write U(x) = u(P (x)) = xP (x), where u(z) = xz with u
′
(z) = x > 0

for all x > 0. Therefore, U(x) is a monotone transformation of P (x), which in turn is a

quasiconcave function of x. Thus U(x) is a quasiconcave function of x for all x > 0 as

well. ∎

A.3 Proposition 2.4

Let us write x = µ + nσ, with n ≠ 0 and σ given, substitute it into (2.2) and define

G(µ) = [1 − (2∫
µ+nσ

µ
f(y)dy)

2

] − 8(µ + nσ)f(µ + nσ)∫
µ+nσ

µ
f(y)dy. (A.2)

We must show that G(⋅) has a root µ̄ and thus, for given n ≠ 0 and σ, the FOC of the

fisherman’s problem has a root as well.

Given that f(⋅) is the normal probability density function, we can observe that f(µ+

nσ) and ∫
µ+nσ

µ f(y)dy do not depend on µ. Therefore, for given values of n ≠ 0 and
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σ, the first term of the above expression is constant, non-negative and less than one —

in fact, it is equal to P (x). One can also notice that G(µ) is continuous, because f(⋅)

is continuous as well. Finally, it is straightforward to see that G
′
(µ) < 0 for all µ ∈ R

and limµ→−∞G(µ) = +∞ and limµ→+∞G(µ) = −∞. Thus the intermediate value theorem

applies, which states that there exists µ̄ ∈ R such that G(µ̄) = 0.

Let the optimal solution be defined by x∗ = µ̄ + nσ. For n = 0, we can observe that

dU

dx
(µ) = [1 − (2∫

µ

µ
f(y)dy)

2

] − 8µf(µ)∫
µ

µ
f(y)dy = 1 > 0, (A.3)

such that we must have n > 0 associated to the optimal solution, that is x∗ > µ̄. We can

also see that

dU

dx
(µ + σ) = [1 − (2∫

µ+σ

µ
f(y)dy)

2

] − 8(µ + σ)f(µ + σ)∫
µ+σ

µ
f(y)dy

= 1 − 4 ⋅ 0.3413447462 − 8
(µ + σ)
√

2πeσ2
0.341344746 < 0 (A.4)

for all (µ,σ) ∈ R2
++

, where we use f(µ + σ) = 1/
√

2πeσ2 and f(µ + σ) ∫
µ+σ

µ f(y)dy =

0.341344746, by the table values of the normal distribution. In fact, dU/dx(µ + σ) = 0

if and only if either µ > 0 and σ < 0 or µ < 0 and σ > 0, such that for (µ,σ) ∈ R2
++

we

must have n < 1, that is, x∗ < µ+σ. Finally, as U(⋅) is a quasiconcave function in R+, the

critical point is a unique maximizer.

We still have to prove that µ̄ > 0. By the definition above (equation (A.2)),

µ̄ =H(n) =
[1 − (2 ∫

µ̄+nσ

µ̄ f(y)dy)
2
]

8f(µ̄ + nσ) ∫
µ̄+nσ

µ̄ f(y)dy
− nσ. (A.5)

We have already proved that x∗ = µ̄+nσ > µ̄, such that 0 < n < 1. Now observe that H(n)

is continuous, limn→0H(n) = +∞ and limn→+∞H(n) = 0, which implies that there exists

n̄ > 0 such that whenever n < n̄ we have µ̄ =H(n) > 0. ∎

A.4 Proposition 2.5

We must show that
∂x∗

∂σ2
= −

1

U ′′
(x∗)

∂U
′

∂σ2
(x∗) > 0, (A.6)

where we apply the implicit function theorem. Given that U
′′
(x∗) < 0 by proposition 2.4,

the sign of the above expression is the same as the one of ∂U
′
(x∗)/∂σ2. Thus, observe
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that

∂U
′

∂σ2 (x∗) = −8 ∫
x∗
µ f(y)dy ∫

x∗
µ

∂f
∂σ2 (y)dy

−8x∗ [ ∂f
∂σ2 (x∗) ∫

x∗
µ f(y)dy + f(x∗) ∫

x∗
µ

∂f
∂σ2 (y)dy] . (A.7)

Because f(⋅) is a probability density function, f(x∗) > 0 and ∫
x∗
µ f(y)dy > 0. In ad-

dition, proposition 2.4 shows that x∗ < µ + σ, which implies that ∂f(x∗)/∂σ2 < 0 and

∫
x∗
µ ∂f(x∗)/∂σ2 < 0. This in turn implies that ∂U

′
(x∗)/∂σ2 > 0 and thus ∂x∗/∂σ2 > 0. ∎

A.5 Proposition 2.6

Let us start by proving statements (ii) and (iii). In order to do so, assume that (i) is

true, that is, the optimal solution x∗(x̃) exists. Let x∗ be the solution of the fisherman’s

problem without moral cost — the solution of the (2.2). Furthermore, recall that x∗ > µ.

Observe that with the inclusion of the moral cost λ(⋅), the fisherman’s problem has the

following FOC:

P (x) + xP
′
(x) − 2α(x − x̃) = 0. (A.8)

We must then consider three cases.

First, suppose that x̃ > x∗ > µ and observe that

V
′
(x∗) = −2α(x∗ − x̃) > 0 (A.9)

V
′
(x̃) = P (x̃) + x̃P

′
(x̃) < 0 (A.10)

implies x∗(x̃) > x∗ and x∗(x̃) < x̃. Therefore, we have x∗(x̃) ∈ (x∗, x̃).

The second case is x∗ > µ > x̃. Now, we have

V
′
(x∗) = −2α(x∗ − x̃) < 0 (A.11)

V
′
(x̃) = P (x̃) + x̃P

′
(x̃) > 0, (A.12)

which implies x∗(x̃) < x∗ and x∗(x̃) > x̃. Moreover,

V
′
(µ) = 1 − 2α(µ − x̃) > 0 (A.13)

if and only if x̃ + 1
2α > µ. Therefore, in this case x∗(x̃) ∈ (µ,x∗) if x̃ + 1

2α > µ and

x∗(x̃) ∈ (x̃, µ] if x̃ + 1
2α ≤ µ.

Finally, the third case is x∗ > x̃ > µ. By evaluating (A.8) at x∗ and x̃ we have (A.11)

and (A.12), respectively. Thus, x(x̃)∗ ∈ (x̃, x∗). Therefore, one can observe that in any

of the three cases the distance ∣x∗(x̃) − x̃∣ is lower than ∣x∗ − x̃∣. By the second case, we

can also notice that as long as α > 1/[2(µ − x̃)] we have x(x̃)∗ < µ.
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In order to prove (i), notice that (A.8) can be rewritten as U
′
(x)−2α(x− x̃) = 0. Once

again, define x = µ + nσ, with n ≠ 0 and σ given, and write (A.8) as

R(µ) = G(µ) − 2α(µ + nσ − x̃). (A.14)

Given that R
′
(µ) = G

′
(µ) − 2α < 0 for all µ, R(µ) is continuous and limµ→−∞R(µ) = +∞

and limµ→+∞H(µ) = −∞, the intermediate value theorem applies, such that there exists

¯̄µ ∈ R such that R( ¯̄µ) = 0. Thus, we can rewrite the optimal solution by x∗(x̃) = ¯̄µ + nσ.

In order to show that x∗(x̃) is a maximum, notice that

V
′′
(x∗(x̃)) = 2P

′
(x∗(x̃)) + x∗(x̃)P

′′
(x∗(x̃)) − 2α. (A.15)

By the proof of the statements (ii) and (iii), we can see that limα→∞ x∗(x̃) = x̃. This

implies that limα→∞ V
′′
(x∗(x̃)) = −∞, so there exists ᾱ ∈ R such that if α > ᾱ, then

V
′′
(x∗(x̃)) < 0. In addition, limα→0 V

′′
(x∗(x̃)) = V

′′
(x∗) < 0, so there exists α ∈ R such

that if α < α, we have V
′′
(x∗(x̃)) < 0. ∎

A.6 Proposition 2.7

By proposition 2.4, we have: for given σ2, there exists µ̄ such that (2.7) has solution x∗∗2 ;

x∗∗2 = x∗1 > µ̄, where x∗1 is the solution of the original static model; and x∗∗2 is independent

of x̃2. We must then show that

J(x1) = x1P
′
(x1) + P (x1) − 2β(x1 − x̃1)e

−(x1−x̃1)
2

x∗∗2 P (x∗∗2 ) = 0 (A.16)

has root. Observe that J(x1) is continuous, because it is composed by continuous func-

tions. Let us consider the three cases analyzed in the proof of proposition 2.6.

In the first case, suppose that x∗∗2 > x̃1 > µ̄. Then,

J(x∗∗2 ) = −C (x∗∗2 − x̃1) e−(x
∗∗
2 −x̃1)

2
< 0

J(µ̄) = 1 −C (µ̄ − x̃1) e−(µ̄−x̃1)
2
> 0,

where C = 2βx∗∗2 P (x∗∗2 ) > 0 is a constant and we use the fact of P (µ̄) = 1. Thus, there

exists x∗∗1 ∈ (µ̄, x∗∗2 ) such that J(x∗∗1 ) = 0.

Second, suppose that x̃1 > x∗∗2 > µ̄. Then:

J(x∗∗2 ) = −C (x∗∗2 − x̃1) e−(x
∗∗
2 −x̃1)

2
> 0

J(x̃1) = x̃1P
′
(x̃1) + P (x̃1) < 0,

where the latter inequality follows from x̃1 > x∗∗2 and proposition 2.4. Therefore, there

exists x∗∗1 ∈ (x∗∗2 , x̃1) such that J(x∗∗1 ) = 0.
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Finally, consider the case in which x∗∗2 > µ̄ > x̃1. Now we have

J(x∗∗2 ) = −C (x∗∗2 − x̃1) e−(x
∗∗
2 −x̃1)

2
< 0

J(x̃1) = x̃1P
′
(x̃1) + P (x̃1) > 0,

where we once again use the fact of x̃1 < x∗∗2 and proposition 2.4. Thus, there exists

x∗∗1 ∈ (x̃1, x∗∗2 ) such that J(x∗∗1 ) = 0. Notice also that J(µ̄) = 1 −C (µ̄ − x̃1) e−(µ̄−x̃1)
2
, such

that J(µ̄) < 0 if and only if

β >
e(µ̄−x̃1)

2

2x∗∗2 P (x∗∗2 )
= β̄.

Thus, one can see that β > β̄ implies x∗∗1 ∈ (x̃1, µ̄).

It is straightforward to see that all the ranges obtained above guarantee that ∣x∗∗2 − x̃1∣ >

∣x∗∗1 − x̃1∣ for any set of parameters.

Now, observe that the second order derivatives of the fisherman’s utility evaluated at

the optimum (x∗∗1 , x
∗∗

2 ) are given by

∂2W
∂x21

(x∗∗1 , x
∗∗

2 ) = 2P
′
(x∗∗1 ) + x∗∗1 P

′′
(x∗∗1 ) − 2βx∗∗2 P (x∗∗2 )e−(x

∗∗
1 −x̃1)

2
[1 − 2(x∗∗1 − x̃1)

2]

∂2W
∂x1∂x2

(x∗∗1 , x
∗∗

2 ) = −2(x∗∗1 − x̃1)e−(x
∗∗
1 −x̃1)

2
β [P (x∗∗2 ) + x∗∗1 P

′′
(x∗∗2 )]

∂2W
∂x22

(x∗∗1 , x
∗∗

2 ) = βe−(x
∗∗
1 −x̃1)

2
[x∗∗2 P

′′
(x∗∗2 ) + 2P

′
(x∗∗2 )] .

Proposition 2.4 states that P (x∗∗2 )+x∗∗1 P
′′
(x∗∗2 ) = 0 and x∗∗2 P

′′
(x∗∗2 )+2P

′
(x∗∗2 ) < 0, so we

have ∂2W
∂x1∂x2

(x∗∗1 , x
∗∗

2 ) = 0 and ∂2W
∂x22

(x∗∗1 , x
∗∗

2 ) < 0. Hence, if we show that ∂2W
∂x21

(x∗∗1 , x
∗∗

2 ) < 0,

the strict concavity of W at (x∗∗1 , x
∗∗

2 ) is guaranteed.

In order to do so, notice that limβ→0 x∗∗1 = x∗1, such that limβ→0
∂2W
∂x21

(x∗∗1 , x
∗∗

2 ) =

2P
′
(x∗1) + x

∗

1P
′′
(x∗1) < 0 by proposition 2.4. Thus, there exists β̄ ∈ (0,1) such that if

β < β̄, we have ∂2W
∂x21

(x∗∗1 , x
∗∗

2 ) < 0. ∎
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